Boosting SNR of cascaded FBGs in a sapphire fiber through a rapid heat treatment

This Letter reports the performance of femtosecond (fs) laser-written distributed fiber Bragg gratings (FBGs) under high-temperature conditions up to 1600°C and explores the impact of rapid heat treatment on signal-to-noise ratio (SNR) enhancement. FBGs are essential for reliable optical sensing in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters 2023-11, Vol.48 (21), p.5703-5706
Hauptverfasser: Mumtaz, Farhan, Tekle, Hanok, Zhang, Bohong, Smith, Jeffrey D., O’Malley, Ronald J., Gerald, Rex E., Huang, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This Letter reports the performance of femtosecond (fs) laser-written distributed fiber Bragg gratings (FBGs) under high-temperature conditions up to 1600°C and explores the impact of rapid heat treatment on signal-to-noise ratio (SNR) enhancement. FBGs are essential for reliable optical sensing in extreme temperature environments. Comprehensive tests demonstrate the remarkable performance and resilience of FBGs at temperatures up to 1600°C, confirming their suitability for deployment in such conditions. The study also reveals significant fringe visibility improvements of up to ∼10 dB on a 1-m-long sapphire optical fiber through rapid heat treatment, representing a first-time achievement to the best of our knowledge. These enhancements are vital for improving the SNR and overall performance of optical fiber systems in extreme temperatures. Furthermore, the research attains long-term stability for the cascaded FBGs over a 24-hr period at 1600°C. This research expands our understanding of the FBG behavior in high-temperature environments and opens avenues for developing robust optical fiber systems for energy, aerospace, oil and gas, and high-temperature distributed sensing applications.
ISSN:0146-9592
1539-4794
DOI:10.1364/OL.506053