Cinnamaldehyde Alleviates Bone Loss by Targeting Oxidative Stress and Mitochondrial Damage via the Nrf2/HO‑1 Pathway in BMSCs and Ovariectomized Mice
Osteoporosis (OP) is typically brought on by disruption of bone homeostasis. Excessive oxidative stress and mitochondrial dysfunction are believed to be the primary mechanisms underlying this disorder. Therefore, in order to restore bone homeostasis effectively, targeted treatment of oxidative stres...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural and food chemistry 2023-11, Vol.71 (45), p.17362-17378 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Osteoporosis (OP) is typically brought on by disruption of bone homeostasis. Excessive oxidative stress and mitochondrial dysfunction are believed to be the primary mechanisms underlying this disorder. Therefore, in order to restore bone homeostasis effectively, targeted treatment of oxidative stress and mitochondrial dysfunction is necessary. Cinnamaldehyde (CIN), a small molecule that acts as an agonist for the nuclear factor erythroid 2-related factor (Nrf2), has been found to possess antiapoptotic, anti-inflammatory, and antioxidant properties. We found that CIN, while rescuing apoptosis, can also reduce the accumulation of reactive oxygen species (ROS) to improve mitochondrial dysfunction and thus restore the osteogenic differentiation potential of BMSCs disrupted by hydrogen peroxide (H2O2) exposure. The role of CIN was preliminarily considered to be a consequence of Nrf2/HO-1 axis activation. The ovariectomized mice model further demonstrated that CIN treatment ameliorated oxidative stress in vivo, partially reversing OVX-induced bone loss. This improvement was seen in the trabecular microarchitecture and bone biochemical indices. However, when ML385 was concurrently injected with CIN, the positive effects of CIN were largely blocked. In conclusion, this study sheds light on the intrinsic mechanisms by which CIN regulates BMSCs and highlights the potential therapeutic applications of these findings in the treatment of osteoporosis. |
---|---|
ISSN: | 0021-8561 1520-5118 |
DOI: | 10.1021/acs.jafc.3c03501 |