Scaffold-based non-viral CRISPR delivery platform for efficient and prolonged gene activation to accelerate tissue regeneration
Clustered regularly interspaced short palindromic repeat activation (CRISPRa) technology has emerged as a precise genome editing tool for activating endogenous transgene expression. While it holds promise for precise cell modification, its translation into tissue engineering has been hampered by bio...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2024-01, Vol.173, p.283-297 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Clustered regularly interspaced short palindromic repeat activation (CRISPRa) technology has emerged as a precise genome editing tool for activating endogenous transgene expression. While it holds promise for precise cell modification, its translation into tissue engineering has been hampered by biosafety concerns and suboptimal delivery methods. To address these challenges, we have developed a CRISPRa non-viral gene delivery platform by immobilizing non-viral CRISPRa complexes into a biocompatible hydrogel/nanofiber (Gel/NF) composite scaffold. The Gel/NF scaffold facilitates the controlled and sustained release of CRISPRa complexes and also promotes cell recruitment to the scaffold for efficient and localized transfection. As a proof of concept, we employed this CRISPRa delivery platform to activate the vascular endothelial growth factor (VEGF) gene in a rat model with full-thickness skin defects. Our results demonstrate sustained upregulation of VEGF expression even at 21 days post-implantation, resulting in enhanced angiogenesis and improved skin regeneration. These findings underscore the potential of the Gel/NF scaffold-based CRISPRa delivery platform as an efficient and durable strategy for gene activation, offering promising prospects for tissue regeneration. STATEMENT OF SIGNIFICANCE: Translation of clustered regularly interspaced short palindromic repeat activation (CRISPRa) therapy to tissue engineering is limited by biosafety concerns and unsatisfactory delivery strategy. To solve this issue, we have developed a CRISPRa non-viral gene delivery platform by immobilizing non-viral CRISPRa complexes into a biocompatible hydrogel/nanofiber (Gel/NF) composite scaffold. This scaffold enables controlled and sustained release of CRISPRa and can induce cell recruitment for localized transfection. As a proof of concept, we activated vascular endothelial growth factor (VEGF) in a rat model with full-thickness skin defects, leading to sustained upregulation of VEGF expression, enhanced angiogenesis and improved skin regeneration in vivo. These findings demonstrate the potential of this platform for gene activation, thereby offering promising prospects for tissue regeneration. |
---|---|
ISSN: | 1742-7061 1878-7568 1878-7568 |
DOI: | 10.1016/j.actbio.2023.10.029 |