Combined effect of electrical energy and graphene oxide on Enterococcus faecalis biofilms

This study aimed to investigate the effects of electrical energy and its synergistic activity with graphene oxide (GO) in Enterococcus faecalis (E. faecalis) biofilms. The viability of E. faecalis biofilms was analyzed by colony-forming units, crystal violet staining, and confocal laser scanning mic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dental Materials Journal 2023/11/25, Vol.42(6), pp.844-850
Hauptverfasser: LEE, Myung-Jin, KIM, Mi-Ah, MIN, Kyung-San
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aimed to investigate the effects of electrical energy and its synergistic activity with graphene oxide (GO) in Enterococcus faecalis (E. faecalis) biofilms. The viability of E. faecalis biofilms was analyzed by colony-forming units, crystal violet staining, and confocal laser scanning microscopy. The morphologies of the biofilms and the bacterial organelles were observed by scanning electron microscopy and transmission emission microscopy (TEM), respectively. Application of electrical energy combined with 0.2% sodium hypochlorite (NaOCl) on E. faecalis in biofilms significantly decreased the bacterial viability and biofilm biomass compared to the 0.2% NaOCl-only-treated group. Furthermore, additional application of GO showed similar antibacterial effects to 0.5% NaOCl. Notably, TEM observation revealed that the bacteria treated with electric energy and GO showed damaged cell membranes. The results suggest that combination of electrical energy and GO enhances antibacterial activity of NaOCl and has the potential to be applied to root canal irrigation protocols.
ISSN:0287-4547
1881-1361
DOI:10.4012/dmj.2023-087