Facile Blending Strategy for Boosting the Conjugated Polymer Semiconductor Transistor’s Mobility
The optimization of field-effect mobility in polymer field-effect transistors (FETs) is a critical parameter for advancing organic electronics. Today, many challenges still persist in understanding the roles of the design and processing of semiconducting polymers toward electronic performance. To ad...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2023-11, Vol.15 (46), p.53755-53764 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The optimization of field-effect mobility in polymer field-effect transistors (FETs) is a critical parameter for advancing organic electronics. Today, many challenges still persist in understanding the roles of the design and processing of semiconducting polymers toward electronic performance. To address this, a facile approach to solution processing using blends of PDPP-TVT and PTPA-3CN is developed, resulting in a 3.5-fold increase in hole mobility and retained stability in electrical performance over 3 cm2 V-1 s-1 after 20 weeks. The amorphous D-A conjugated structure and strong intramolecular polarity of PTPA-3CN are identified as major contributors to the observed improvements in mobility. Additionally, the composite analysis by X-ray photoelectron spectroscopy (XPS) and the flash differential scanning calorimetry (DSC) technique showed a uniform distribution and was well mixed in binary polymer systems. This mobility enhancement technique has also been successfully applied to other polymer semiconductor systems, offering a new design strategy for blending-type organic transistor systems. This blending methodology holds great promise for the practical applications of OFETs. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.3c10499 |