Laser-Driven Insulator–Metal Phase Transitions in CsPbI3 Quantum Dots and Influence of Doped Metal Nanowires
All-inorganic CsPbI3 perovskite quantum dots (QDs) have received extensive attention in developing optoelectronic devices due to their outstanding properties. Here, using time-dependent density functional theory (TDDFT), the optical properties of the three distinct phases (α, γ, and δ) of the CsPbI3...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2023-11, Vol.14 (44), p.10012-10018 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | All-inorganic CsPbI3 perovskite quantum dots (QDs) have received extensive attention in developing optoelectronic devices due to their outstanding properties. Here, using time-dependent density functional theory (TDDFT), the optical properties of the three distinct phases (α, γ, and δ) of the CsPbI3 QDs are investigated. Surprisingly, the δ phase structured QDs exhibit stronger optical absorption properties than the α and γ phase QDs when exposed to equivalent laser irradiation. Considering the quantum size effect, size regulation is also performed on the three structures, the results reveal a significant improvement in optical properties as the size increases in the direction of laser irradiation. More interestingly, Ag-hybrid QDs show better optical gain and maintain a laser-driven metallic state. Our results demonstrate the great potential of size adjustment and metal nanowire coupling in improving the optoelectronic properties of QDs and developing efficient photovoltaic devices. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.3c02487 |