mRNA Lipid Nanoparticles for Ex Vivo Engineering of Immunosuppressive T Cells for Autoimmunity Therapies

Cell-based therapies for autoimmune diseases have gained significant traction, with several approaches centered around the regulatory T (Treg) cell─a well-known immunosuppressive cell characterized by its expression of the transcription factor Foxp3. Unfortunately, due to low numbers of Treg cells a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2023-11, Vol.23 (22), p.10179-10188
Hauptverfasser: Thatte, Ajay S., Hamilton, Alex G., Nachod, Benjamin E., Mukalel, Alvin J., Billingsley, Margaret M., Palanki, Rohan, Swingle, Kelsey L., Mitchell, Michael J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cell-based therapies for autoimmune diseases have gained significant traction, with several approaches centered around the regulatory T (Treg) cell─a well-known immunosuppressive cell characterized by its expression of the transcription factor Foxp3. Unfortunately, due to low numbers of Treg cells available in circulation, harvesting and culturing Treg cells remains a challenge. It has been reported that engineering Foxp3 expression in CD4+ T cells can result in a Treg-like phenotype; however, current methods result in the inefficient engineering of these cells. Here, we develop an ionizable lipid nanoparticle (LNP) platform to effectively deliver Foxp3 mRNA to CD4+ T cells. We successfully engineer CD4+ T cells into Foxp3-T (FP3T) cells that transiently exhibit an immunosuppressive phenotype and functionally suppress the proliferation of effector T cells. These results demonstrate the promise of an LNP platform for engineering immunosuppressive T cells with potential applications in autoimmunity therapies.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.3c02573