Best conditioned parametric identification of transfer function models in the frequency domain

It is shown that rational transfer function models based on orthogonal Forsythe polynomials minimize the condition number of the Jacobian of estimators in a least-squares framework. As a result, very high order linear time-invariant systems can be identified. The numerical stability of the estimatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 1995-11, Vol.40 (11), p.1954-1960
Hauptverfasser: Rolain, Y., Pintelon, R., Xu, K.Q., Vold, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is shown that rational transfer function models based on orthogonal Forsythe polynomials minimize the condition number of the Jacobian of estimators in a least-squares framework. As a result, very high order linear time-invariant systems can be identified. The numerical stability of the estimation of the parameters and their derived quantities (zeros, poles, ...) are obtained. Statistical uncertainty bounds are provided. The method is illustrated on a 100th order simulated system and a 120th order measured beam-structure.< >
ISSN:0018-9286
1558-2523
DOI:10.1109/9.471223