Expanding the Design Space of Constraints in Auxiliary-Field Quantum Monte Carlo
We formulate and characterize a new constraint for auxiliary-field quantum Monte Carlo (AFQMC) applicable for general fermionic systems, which allows for the accumulation of phase in the random walk but disallows walkers with a magnitude of phase greater than π with respect to the trial wave functio...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2023-11, Vol.19 (21), p.7567-7576 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We formulate and characterize a new constraint for auxiliary-field quantum Monte Carlo (AFQMC) applicable for general fermionic systems, which allows for the accumulation of phase in the random walk but disallows walkers with a magnitude of phase greater than π with respect to the trial wave function. For short imaginary times, before walkers accumulate sizable phase values, this approach is equivalent to exact free projection, allowing one to observe the accumulation of bias associated with the constraint and thus estimate its magnitude a priori. We demonstrate the stability of this constraint over arbitrary imaginary times and system sizes, highlighting the removal of noise due to the fermionic sign problem. Benchmark total energies for a variety of weakly and strongly correlated molecular systems reveal a distinct bias with respect to standard phaseless AFQMC, with a comparative increase in accuracy given sufficient quality of the trial wave function for the set of studied cases. We then take this constraint, termed linecut AFQMC (lc-AFQMC), and systematically release it (lcR-AFQMC), providing a route to obtain a smooth bridge between constrained AFQMC and the exact free projection results. |
---|---|
ISSN: | 1549-9618 1549-9626 |
DOI: | 10.1021/acs.jctc.3c00654 |