Hardware Implementation of Quantum Stabilizers in Superconducting Circuits
Stabilizer operations are at the heart of quantum error correction and are typically implemented in software-controlled entangling gates and measurements of groups of qubits. Alternatively, qubits can be designed so that the Hamiltonian corresponds directly to a stabilizer for protecting quantum inf...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2023-10, Vol.131 (15), p.150602-150602, Article 150602 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 150602 |
---|---|
container_issue | 15 |
container_start_page | 150602 |
container_title | Physical review letters |
container_volume | 131 |
creator | Dodge, K. Liu, Y. Klots, A. R. Cole, B. Shearrow, A. Senatore, M. Zhu, S. Ioffe, L. B. McDermott, R. Plourde, B. L. T. |
description | Stabilizer operations are at the heart of quantum error correction and are typically implemented in software-controlled entangling gates and measurements of groups of qubits. Alternatively, qubits can be designed so that the Hamiltonian corresponds directly to a stabilizer for protecting quantum information. We demonstrate such a hardware implementation of stabilizers in a superconducting circuit composed of chains of π-periodic Josephson elements. With local on-chip flux and charge biasing, we observe a progressive softening of the energy band dispersion with respect to flux as the number of frustrated plaquette elements is increased, in close agreement with our numerical modeling. |
doi_str_mv | 10.1103/PhysRevLett.131.150602 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2883570067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2883570067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-1b45432d2b02b815a3475ea986e2167a469c4b6c0b8541eba2a5f86e91349b653</originalsourceid><addsrcrecordid>eNpN0DtPwzAUBWALgUQp_AWUkSXlXr-SjKgCWlSJR2G2bNcBo7ywHVD59RSVgekM5-gMHyHnCDNEYJcPb9v45D5XLqUZMpyhAAn0gEwQiiovEPkhmQAwzCuA4picxPgOAEhlOSF3Cx02Xzq4bNkOjWtdl3TyfZf1dfY46i6NbbZO2vjGf7sQM99l63FwwfbdZrTJd6_Z3Ac7-hRPyVGtm-jO_nJKXm6un-eLfHV_u5xfrXJLgaUcDRec0Q01QE2JQjNeCKerUjqKstBcVpYbacGUgqMzmmpR78oKGa-MFGxKLva_Q-g_RheTan20rml05_oxKlqWTBQAsthN5X5qQx9jcLUagm912CoE9Yun_uGpHZ7a47EfksVmBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2883570067</pqid></control><display><type>article</type><title>Hardware Implementation of Quantum Stabilizers in Superconducting Circuits</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Dodge, K. ; Liu, Y. ; Klots, A. R. ; Cole, B. ; Shearrow, A. ; Senatore, M. ; Zhu, S. ; Ioffe, L. B. ; McDermott, R. ; Plourde, B. L. T.</creator><creatorcontrib>Dodge, K. ; Liu, Y. ; Klots, A. R. ; Cole, B. ; Shearrow, A. ; Senatore, M. ; Zhu, S. ; Ioffe, L. B. ; McDermott, R. ; Plourde, B. L. T.</creatorcontrib><description>Stabilizer operations are at the heart of quantum error correction and are typically implemented in software-controlled entangling gates and measurements of groups of qubits. Alternatively, qubits can be designed so that the Hamiltonian corresponds directly to a stabilizer for protecting quantum information. We demonstrate such a hardware implementation of stabilizers in a superconducting circuit composed of chains of π-periodic Josephson elements. With local on-chip flux and charge biasing, we observe a progressive softening of the energy band dispersion with respect to flux as the number of frustrated plaquette elements is increased, in close agreement with our numerical modeling.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.131.150602</identifier><language>eng</language><ispartof>Physical review letters, 2023-10, Vol.131 (15), p.150602-150602, Article 150602</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c203t-1b45432d2b02b815a3475ea986e2167a469c4b6c0b8541eba2a5f86e91349b653</citedby><cites>FETCH-LOGICAL-c203t-1b45432d2b02b815a3475ea986e2167a469c4b6c0b8541eba2a5f86e91349b653</cites><orcidid>0000-0002-5110-9917 ; 0009-0008-0181-3165 ; 0000-0001-9890-8532 ; 0009-0006-8039-3474 ; 0000-0002-9318-0092 ; 0000-0002-3656-9392</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Dodge, K.</creatorcontrib><creatorcontrib>Liu, Y.</creatorcontrib><creatorcontrib>Klots, A. R.</creatorcontrib><creatorcontrib>Cole, B.</creatorcontrib><creatorcontrib>Shearrow, A.</creatorcontrib><creatorcontrib>Senatore, M.</creatorcontrib><creatorcontrib>Zhu, S.</creatorcontrib><creatorcontrib>Ioffe, L. B.</creatorcontrib><creatorcontrib>McDermott, R.</creatorcontrib><creatorcontrib>Plourde, B. L. T.</creatorcontrib><title>Hardware Implementation of Quantum Stabilizers in Superconducting Circuits</title><title>Physical review letters</title><description>Stabilizer operations are at the heart of quantum error correction and are typically implemented in software-controlled entangling gates and measurements of groups of qubits. Alternatively, qubits can be designed so that the Hamiltonian corresponds directly to a stabilizer for protecting quantum information. We demonstrate such a hardware implementation of stabilizers in a superconducting circuit composed of chains of π-periodic Josephson elements. With local on-chip flux and charge biasing, we observe a progressive softening of the energy band dispersion with respect to flux as the number of frustrated plaquette elements is increased, in close agreement with our numerical modeling.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpN0DtPwzAUBWALgUQp_AWUkSXlXr-SjKgCWlSJR2G2bNcBo7ywHVD59RSVgekM5-gMHyHnCDNEYJcPb9v45D5XLqUZMpyhAAn0gEwQiiovEPkhmQAwzCuA4picxPgOAEhlOSF3Cx02Xzq4bNkOjWtdl3TyfZf1dfY46i6NbbZO2vjGf7sQM99l63FwwfbdZrTJd6_Z3Ac7-hRPyVGtm-jO_nJKXm6un-eLfHV_u5xfrXJLgaUcDRec0Q01QE2JQjNeCKerUjqKstBcVpYbacGUgqMzmmpR78oKGa-MFGxKLva_Q-g_RheTan20rml05_oxKlqWTBQAsthN5X5qQx9jcLUagm912CoE9Yun_uGpHZ7a47EfksVmBQ</recordid><startdate>20231013</startdate><enddate>20231013</enddate><creator>Dodge, K.</creator><creator>Liu, Y.</creator><creator>Klots, A. R.</creator><creator>Cole, B.</creator><creator>Shearrow, A.</creator><creator>Senatore, M.</creator><creator>Zhu, S.</creator><creator>Ioffe, L. B.</creator><creator>McDermott, R.</creator><creator>Plourde, B. L. T.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5110-9917</orcidid><orcidid>https://orcid.org/0009-0008-0181-3165</orcidid><orcidid>https://orcid.org/0000-0001-9890-8532</orcidid><orcidid>https://orcid.org/0009-0006-8039-3474</orcidid><orcidid>https://orcid.org/0000-0002-9318-0092</orcidid><orcidid>https://orcid.org/0000-0002-3656-9392</orcidid></search><sort><creationdate>20231013</creationdate><title>Hardware Implementation of Quantum Stabilizers in Superconducting Circuits</title><author>Dodge, K. ; Liu, Y. ; Klots, A. R. ; Cole, B. ; Shearrow, A. ; Senatore, M. ; Zhu, S. ; Ioffe, L. B. ; McDermott, R. ; Plourde, B. L. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-1b45432d2b02b815a3475ea986e2167a469c4b6c0b8541eba2a5f86e91349b653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dodge, K.</creatorcontrib><creatorcontrib>Liu, Y.</creatorcontrib><creatorcontrib>Klots, A. R.</creatorcontrib><creatorcontrib>Cole, B.</creatorcontrib><creatorcontrib>Shearrow, A.</creatorcontrib><creatorcontrib>Senatore, M.</creatorcontrib><creatorcontrib>Zhu, S.</creatorcontrib><creatorcontrib>Ioffe, L. B.</creatorcontrib><creatorcontrib>McDermott, R.</creatorcontrib><creatorcontrib>Plourde, B. L. T.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dodge, K.</au><au>Liu, Y.</au><au>Klots, A. R.</au><au>Cole, B.</au><au>Shearrow, A.</au><au>Senatore, M.</au><au>Zhu, S.</au><au>Ioffe, L. B.</au><au>McDermott, R.</au><au>Plourde, B. L. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hardware Implementation of Quantum Stabilizers in Superconducting Circuits</atitle><jtitle>Physical review letters</jtitle><date>2023-10-13</date><risdate>2023</risdate><volume>131</volume><issue>15</issue><spage>150602</spage><epage>150602</epage><pages>150602-150602</pages><artnum>150602</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Stabilizer operations are at the heart of quantum error correction and are typically implemented in software-controlled entangling gates and measurements of groups of qubits. Alternatively, qubits can be designed so that the Hamiltonian corresponds directly to a stabilizer for protecting quantum information. We demonstrate such a hardware implementation of stabilizers in a superconducting circuit composed of chains of π-periodic Josephson elements. With local on-chip flux and charge biasing, we observe a progressive softening of the energy band dispersion with respect to flux as the number of frustrated plaquette elements is increased, in close agreement with our numerical modeling.</abstract><doi>10.1103/PhysRevLett.131.150602</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5110-9917</orcidid><orcidid>https://orcid.org/0009-0008-0181-3165</orcidid><orcidid>https://orcid.org/0000-0001-9890-8532</orcidid><orcidid>https://orcid.org/0009-0006-8039-3474</orcidid><orcidid>https://orcid.org/0000-0002-9318-0092</orcidid><orcidid>https://orcid.org/0000-0002-3656-9392</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2023-10, Vol.131 (15), p.150602-150602, Article 150602 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_2883570067 |
source | American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Hardware Implementation of Quantum Stabilizers in Superconducting Circuits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A56%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hardware%20Implementation%20of%20Quantum%20Stabilizers%20in%20Superconducting%20Circuits&rft.jtitle=Physical%20review%20letters&rft.au=Dodge,%20K.&rft.date=2023-10-13&rft.volume=131&rft.issue=15&rft.spage=150602&rft.epage=150602&rft.pages=150602-150602&rft.artnum=150602&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.131.150602&rft_dat=%3Cproquest_cross%3E2883570067%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2883570067&rft_id=info:pmid/&rfr_iscdi=true |