Hardware Implementation of Quantum Stabilizers in Superconducting Circuits

Stabilizer operations are at the heart of quantum error correction and are typically implemented in software-controlled entangling gates and measurements of groups of qubits. Alternatively, qubits can be designed so that the Hamiltonian corresponds directly to a stabilizer for protecting quantum inf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2023-10, Vol.131 (15), p.150602-150602, Article 150602
Hauptverfasser: Dodge, K., Liu, Y., Klots, A. R., Cole, B., Shearrow, A., Senatore, M., Zhu, S., Ioffe, L. B., McDermott, R., Plourde, B. L. T.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 150602
container_issue 15
container_start_page 150602
container_title Physical review letters
container_volume 131
creator Dodge, K.
Liu, Y.
Klots, A. R.
Cole, B.
Shearrow, A.
Senatore, M.
Zhu, S.
Ioffe, L. B.
McDermott, R.
Plourde, B. L. T.
description Stabilizer operations are at the heart of quantum error correction and are typically implemented in software-controlled entangling gates and measurements of groups of qubits. Alternatively, qubits can be designed so that the Hamiltonian corresponds directly to a stabilizer for protecting quantum information. We demonstrate such a hardware implementation of stabilizers in a superconducting circuit composed of chains of π-periodic Josephson elements. With local on-chip flux and charge biasing, we observe a progressive softening of the energy band dispersion with respect to flux as the number of frustrated plaquette elements is increased, in close agreement with our numerical modeling.
doi_str_mv 10.1103/PhysRevLett.131.150602
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2883570067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2883570067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-1b45432d2b02b815a3475ea986e2167a469c4b6c0b8541eba2a5f86e91349b653</originalsourceid><addsrcrecordid>eNpN0DtPwzAUBWALgUQp_AWUkSXlXr-SjKgCWlSJR2G2bNcBo7ywHVD59RSVgekM5-gMHyHnCDNEYJcPb9v45D5XLqUZMpyhAAn0gEwQiiovEPkhmQAwzCuA4picxPgOAEhlOSF3Cx02Xzq4bNkOjWtdl3TyfZf1dfY46i6NbbZO2vjGf7sQM99l63FwwfbdZrTJd6_Z3Ac7-hRPyVGtm-jO_nJKXm6un-eLfHV_u5xfrXJLgaUcDRec0Q01QE2JQjNeCKerUjqKstBcVpYbacGUgqMzmmpR78oKGa-MFGxKLva_Q-g_RheTan20rml05_oxKlqWTBQAsthN5X5qQx9jcLUagm912CoE9Yun_uGpHZ7a47EfksVmBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2883570067</pqid></control><display><type>article</type><title>Hardware Implementation of Quantum Stabilizers in Superconducting Circuits</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Dodge, K. ; Liu, Y. ; Klots, A. R. ; Cole, B. ; Shearrow, A. ; Senatore, M. ; Zhu, S. ; Ioffe, L. B. ; McDermott, R. ; Plourde, B. L. T.</creator><creatorcontrib>Dodge, K. ; Liu, Y. ; Klots, A. R. ; Cole, B. ; Shearrow, A. ; Senatore, M. ; Zhu, S. ; Ioffe, L. B. ; McDermott, R. ; Plourde, B. L. T.</creatorcontrib><description>Stabilizer operations are at the heart of quantum error correction and are typically implemented in software-controlled entangling gates and measurements of groups of qubits. Alternatively, qubits can be designed so that the Hamiltonian corresponds directly to a stabilizer for protecting quantum information. We demonstrate such a hardware implementation of stabilizers in a superconducting circuit composed of chains of π-periodic Josephson elements. With local on-chip flux and charge biasing, we observe a progressive softening of the energy band dispersion with respect to flux as the number of frustrated plaquette elements is increased, in close agreement with our numerical modeling.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.131.150602</identifier><language>eng</language><ispartof>Physical review letters, 2023-10, Vol.131 (15), p.150602-150602, Article 150602</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c203t-1b45432d2b02b815a3475ea986e2167a469c4b6c0b8541eba2a5f86e91349b653</citedby><cites>FETCH-LOGICAL-c203t-1b45432d2b02b815a3475ea986e2167a469c4b6c0b8541eba2a5f86e91349b653</cites><orcidid>0000-0002-5110-9917 ; 0009-0008-0181-3165 ; 0000-0001-9890-8532 ; 0009-0006-8039-3474 ; 0000-0002-9318-0092 ; 0000-0002-3656-9392</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Dodge, K.</creatorcontrib><creatorcontrib>Liu, Y.</creatorcontrib><creatorcontrib>Klots, A. R.</creatorcontrib><creatorcontrib>Cole, B.</creatorcontrib><creatorcontrib>Shearrow, A.</creatorcontrib><creatorcontrib>Senatore, M.</creatorcontrib><creatorcontrib>Zhu, S.</creatorcontrib><creatorcontrib>Ioffe, L. B.</creatorcontrib><creatorcontrib>McDermott, R.</creatorcontrib><creatorcontrib>Plourde, B. L. T.</creatorcontrib><title>Hardware Implementation of Quantum Stabilizers in Superconducting Circuits</title><title>Physical review letters</title><description>Stabilizer operations are at the heart of quantum error correction and are typically implemented in software-controlled entangling gates and measurements of groups of qubits. Alternatively, qubits can be designed so that the Hamiltonian corresponds directly to a stabilizer for protecting quantum information. We demonstrate such a hardware implementation of stabilizers in a superconducting circuit composed of chains of π-periodic Josephson elements. With local on-chip flux and charge biasing, we observe a progressive softening of the energy band dispersion with respect to flux as the number of frustrated plaquette elements is increased, in close agreement with our numerical modeling.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpN0DtPwzAUBWALgUQp_AWUkSXlXr-SjKgCWlSJR2G2bNcBo7ywHVD59RSVgekM5-gMHyHnCDNEYJcPb9v45D5XLqUZMpyhAAn0gEwQiiovEPkhmQAwzCuA4picxPgOAEhlOSF3Cx02Xzq4bNkOjWtdl3TyfZf1dfY46i6NbbZO2vjGf7sQM99l63FwwfbdZrTJd6_Z3Ac7-hRPyVGtm-jO_nJKXm6un-eLfHV_u5xfrXJLgaUcDRec0Q01QE2JQjNeCKerUjqKstBcVpYbacGUgqMzmmpR78oKGa-MFGxKLva_Q-g_RheTan20rml05_oxKlqWTBQAsthN5X5qQx9jcLUagm912CoE9Yun_uGpHZ7a47EfksVmBQ</recordid><startdate>20231013</startdate><enddate>20231013</enddate><creator>Dodge, K.</creator><creator>Liu, Y.</creator><creator>Klots, A. R.</creator><creator>Cole, B.</creator><creator>Shearrow, A.</creator><creator>Senatore, M.</creator><creator>Zhu, S.</creator><creator>Ioffe, L. B.</creator><creator>McDermott, R.</creator><creator>Plourde, B. L. T.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5110-9917</orcidid><orcidid>https://orcid.org/0009-0008-0181-3165</orcidid><orcidid>https://orcid.org/0000-0001-9890-8532</orcidid><orcidid>https://orcid.org/0009-0006-8039-3474</orcidid><orcidid>https://orcid.org/0000-0002-9318-0092</orcidid><orcidid>https://orcid.org/0000-0002-3656-9392</orcidid></search><sort><creationdate>20231013</creationdate><title>Hardware Implementation of Quantum Stabilizers in Superconducting Circuits</title><author>Dodge, K. ; Liu, Y. ; Klots, A. R. ; Cole, B. ; Shearrow, A. ; Senatore, M. ; Zhu, S. ; Ioffe, L. B. ; McDermott, R. ; Plourde, B. L. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-1b45432d2b02b815a3475ea986e2167a469c4b6c0b8541eba2a5f86e91349b653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dodge, K.</creatorcontrib><creatorcontrib>Liu, Y.</creatorcontrib><creatorcontrib>Klots, A. R.</creatorcontrib><creatorcontrib>Cole, B.</creatorcontrib><creatorcontrib>Shearrow, A.</creatorcontrib><creatorcontrib>Senatore, M.</creatorcontrib><creatorcontrib>Zhu, S.</creatorcontrib><creatorcontrib>Ioffe, L. B.</creatorcontrib><creatorcontrib>McDermott, R.</creatorcontrib><creatorcontrib>Plourde, B. L. T.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dodge, K.</au><au>Liu, Y.</au><au>Klots, A. R.</au><au>Cole, B.</au><au>Shearrow, A.</au><au>Senatore, M.</au><au>Zhu, S.</au><au>Ioffe, L. B.</au><au>McDermott, R.</au><au>Plourde, B. L. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hardware Implementation of Quantum Stabilizers in Superconducting Circuits</atitle><jtitle>Physical review letters</jtitle><date>2023-10-13</date><risdate>2023</risdate><volume>131</volume><issue>15</issue><spage>150602</spage><epage>150602</epage><pages>150602-150602</pages><artnum>150602</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Stabilizer operations are at the heart of quantum error correction and are typically implemented in software-controlled entangling gates and measurements of groups of qubits. Alternatively, qubits can be designed so that the Hamiltonian corresponds directly to a stabilizer for protecting quantum information. We demonstrate such a hardware implementation of stabilizers in a superconducting circuit composed of chains of π-periodic Josephson elements. With local on-chip flux and charge biasing, we observe a progressive softening of the energy band dispersion with respect to flux as the number of frustrated plaquette elements is increased, in close agreement with our numerical modeling.</abstract><doi>10.1103/PhysRevLett.131.150602</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5110-9917</orcidid><orcidid>https://orcid.org/0009-0008-0181-3165</orcidid><orcidid>https://orcid.org/0000-0001-9890-8532</orcidid><orcidid>https://orcid.org/0009-0006-8039-3474</orcidid><orcidid>https://orcid.org/0000-0002-9318-0092</orcidid><orcidid>https://orcid.org/0000-0002-3656-9392</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2023-10, Vol.131 (15), p.150602-150602, Article 150602
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2883570067
source American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Hardware Implementation of Quantum Stabilizers in Superconducting Circuits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A56%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hardware%20Implementation%20of%20Quantum%20Stabilizers%20in%20Superconducting%20Circuits&rft.jtitle=Physical%20review%20letters&rft.au=Dodge,%20K.&rft.date=2023-10-13&rft.volume=131&rft.issue=15&rft.spage=150602&rft.epage=150602&rft.pages=150602-150602&rft.artnum=150602&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.131.150602&rft_dat=%3Cproquest_cross%3E2883570067%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2883570067&rft_id=info:pmid/&rfr_iscdi=true