Hardware Implementation of Quantum Stabilizers in Superconducting Circuits
Stabilizer operations are at the heart of quantum error correction and are typically implemented in software-controlled entangling gates and measurements of groups of qubits. Alternatively, qubits can be designed so that the Hamiltonian corresponds directly to a stabilizer for protecting quantum inf...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2023-10, Vol.131 (15), p.150602-150602, Article 150602 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Stabilizer operations are at the heart of quantum error correction and are typically implemented in software-controlled entangling gates and measurements of groups of qubits. Alternatively, qubits can be designed so that the Hamiltonian corresponds directly to a stabilizer for protecting quantum information. We demonstrate such a hardware implementation of stabilizers in a superconducting circuit composed of chains of π-periodic Josephson elements. With local on-chip flux and charge biasing, we observe a progressive softening of the energy band dispersion with respect to flux as the number of frustrated plaquette elements is increased, in close agreement with our numerical modeling. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.131.150602 |