Hardware Implementation of Quantum Stabilizers in Superconducting Circuits

Stabilizer operations are at the heart of quantum error correction and are typically implemented in software-controlled entangling gates and measurements of groups of qubits. Alternatively, qubits can be designed so that the Hamiltonian corresponds directly to a stabilizer for protecting quantum inf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2023-10, Vol.131 (15), p.150602-150602, Article 150602
Hauptverfasser: Dodge, K., Liu, Y., Klots, A. R., Cole, B., Shearrow, A., Senatore, M., Zhu, S., Ioffe, L. B., McDermott, R., Plourde, B. L. T.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stabilizer operations are at the heart of quantum error correction and are typically implemented in software-controlled entangling gates and measurements of groups of qubits. Alternatively, qubits can be designed so that the Hamiltonian corresponds directly to a stabilizer for protecting quantum information. We demonstrate such a hardware implementation of stabilizers in a superconducting circuit composed of chains of π-periodic Josephson elements. With local on-chip flux and charge biasing, we observe a progressive softening of the energy band dispersion with respect to flux as the number of frustrated plaquette elements is increased, in close agreement with our numerical modeling.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.131.150602