Nonisothermal crystallisation, melting behavior and wide angle X-ray scattering investigations on linear low density polyethylene (LLDPE)/ethylene vinyl acetate (EVA) blends: effects of compatibilisation and dynamic crosslinking
Crystallisation studies on LLDPE/EVA blends and the individual components were performed with wide angle X-ray scattering (WAXS) technique and differential scanning calorimetry (DSC) DSC was used to characterise the quiescent crystallisation behavior. The heat of fusion and crystallinity of the blen...
Gespeichert in:
Veröffentlicht in: | European polymer journal 2005-06, Vol.41 (6), p.1410-1419 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Crystallisation studies on LLDPE/EVA blends and the individual components were performed with wide angle X-ray scattering (WAXS) technique and differential scanning calorimetry (DSC) DSC was used to characterise the quiescent crystallisation behavior. The heat of fusion and crystallinity of the blends were reduced by the addition of EVA. The experimental and theoretical values of crystallinity of the blends were found to be mutually agreeing. Crystallisation of LLDPE remains impeded to some extent due to the presence of amorphous EVA. Compatibilisation does not affect crystallinity whereas crosslinking decreases crystallinity. Crosslinking and compatibilisation make no significant change in the melting temperature of the blends. X-ray diffraction studies were carried out on un-crosslinked and crosslinked LLDPE/EVA blends with a view to study the effect of blend composition and crosslinking on crystallinity and lattice distance. Studies revealed that LLDPE and EVA have orthorhombic unit cell. Blending with EVA did not affect the crystalline structure of LLDPE, but the crystallinity decreases with EVA content. At low concentrations of EVA the lattice parameters remain unchanged. Above 30% EVA content however, a linear increase has been observed. Dicumyl peroxide (DCP) crosslinked samples show considerable shift of (1
1
0), (2
0
0) and (0
2
0) crystalline peaks towards lower 2
θ values indicating an increase of unit cell parameters of the orthorhombic unit cell of polyethylene. At lower EVA-concentrations ( |
---|---|
ISSN: | 0014-3057 1873-1945 |
DOI: | 10.1016/j.eurpolymj.2004.10.016 |