Exposure to sublethal concentrations of imidacloprid, pyraclostrobin, and glyphosate harm the behavior and fat body cells of the stingless bee Scaptotrigona postica
Pesticide use in agriculture threatens non-target insects such as bees. Considering the ecological and economic relevance of native bees, such as Scaptotrigona postica, and the insufficient studies on the effects of pesticides on their behavior and physiology, improving the current knowledge on this...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2024-01, Vol.907, p.168072, Article 168072 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pesticide use in agriculture threatens non-target insects such as bees. Considering the ecological and economic relevance of native bees, such as Scaptotrigona postica, and the insufficient studies on the effects of pesticides on their behavior and physiology, improving the current knowledge on this issue is essential. Therefore, this study investigated the sublethal effects of imidacloprid, pyraclostrobin, and glyphosate on the behavior and fat body cells of S. postica. Pesticide ingestion decreased the walking distance and mean velocity of bees compared to the control and solvent control groups. The oenocytes of the control groups were spherical, with central nuclei containing decondensed chromatin, and the trophocytes presented irregular morphology, with cells varying in shape and the cytoplasm filled with vacuoles and granules. However, bees exposed to pesticides showed extensive cytoarchitectural disruption in the fat body, such as vacuolization and shape changes in oenocytes and altered nuclei morphology in trophocytes. Moreover, pesticide exposure increased the number of atypical oenocytes and altered trophocytes, except for the PYR group, which showed a lower number of atypical oenocytes. Caspase-positive labeling significantly increased in all exposed bee groups. Alternatively, TLR4 labeling was significantly decreased in the exposed groups compared to the control groups. There was a significant increase in HSP90 immunolabeling in all exposed groups compared to the control. These findings reinforce the importance of research on the sublethal effects of low pesticide concentrations on key neotropical pollinators and prove that these toxic substances can impair their detoxification and immune defense.
[Display omitted]
•Low concentrations of pesticides, alone and in combination, alter the bee's behavior.•Oral exposure to pesticides causes morphological changes in the fat body.•Oral exposure to pesticides induces cell death and decreases the immune defense of bees.•Oral exposure to pesticides increases HSP90 labeling. |
---|---|
ISSN: | 0048-9697 1879-1026 1879-1026 |
DOI: | 10.1016/j.scitotenv.2023.168072 |