Gut microbiota perturbations during larval stages in Bufo gargarizans tadpoles after Cu exposure with or without the presence of Pb

Cu and Pb are ubiquitous environmental contaminants, but there is limited information on their potential impacts on gut microbiota profile in anuran amphibians at different developmental stages during metamorphosis. In this study, Bufo gargarizans tadpoles were chronically exposed to Cu alone or Cu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental pollution (1987) 2024-01, Vol.340, p.122774-122774, Article 122774
Hauptverfasser: Chai, Lihong, Song, Yanjiao, Chen, Aixia, Jiang, Ling, Deng, Hongzhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cu and Pb are ubiquitous environmental contaminants, but there is limited information on their potential impacts on gut microbiota profile in anuran amphibians at different developmental stages during metamorphosis. In this study, Bufo gargarizans tadpoles were chronically exposed to Cu alone or Cu combined with Pb from Gs26 throughout metamorphosis. Morphology of tadpoles, histological characteristic and bacterial community of intestines were evaluated at three developmental stages: Gs33, Gs36, and Gs42. Results showed that Cu and Cu + Pb exposure caused various degrees of morphological and histological changes in guts at tested three stages. In addition, bacterial richness and diversity in tadpoles especially at Gs33 and Gs42 were disturbed by Cu and Cu + Pb. Beta diversity demonstrated that the bacterial community structures were influenced by both heavy metals exposure and developmental stages. Alterations in taxonomic composition were characterized by increased abundance of Proteobacteria and Firmicutes, reduction of Fusobacteriota, as well as decreased Cetobacterium and increased C39 at all three stages. Overall, response of gut bacterial diversity and composition to Cu stress depends on the developmental stage, while the altered patterns of bacterial community at Cu stress could be modified further by the presence of Pb. Moreover, predicted metabolic disorders were associated with shifts in bacterial community, but needs integrated information from metagenomic and metatranscriptomic analyses. These results contribute to the growing body of research about potential ecotoxicological effects of heavy metals on amphibian gut microbiota during metamorphosis. [Display omitted] •Response of gut microbiota to Cu and Cu + Pb were evaluated at three developmental stages.•Cu and Cu + Pb exposure caused morphological and intestinal histological changes.•Shifts in gut microbiota depend on developmental stages.•Presence of Pb could modulate the gut microbiota profile under Cu stress.
ISSN:0269-7491
1873-6424
DOI:10.1016/j.envpol.2023.122774