Immunoinformatics-based multi-epitope containing fused polypeptide vaccine design against visceral leishmaniasis with high immunogenicity and TLR binding
Visceral leishmaniasis (VL) is the most lethal among all leishmaniasis diseases and remains categorized as a neglected tropical disease (NTD). This study aimed to develop a peptide-based multi-epitope vaccine construct against VL using immunoinformatics methodologies. To achieve this, four distinct...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2023-12, Vol.253, p.127567-127567, Article 127567 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Visceral leishmaniasis (VL) is the most lethal among all leishmaniasis diseases and remains categorized as a neglected tropical disease (NTD). This study aimed to develop a peptide-based multi-epitope vaccine construct against VL using immunoinformatics methodologies. To achieve this, four distinct proteins were screened to identify peptides consisting of 9–15 amino acids with high binding affinity to toll-like receptors (TLRs), strong antigenicity, low allergenicity, and minimal toxicity. The resulting multi-epitope vaccine construct was fused in a tandem arrangement with appropriate linker peptides and exhibited superior properties related to cytotoxic T lymphocytes (CTLs), helper T lymphocytes (HTLs), and B-cell epitopes. Subsequently, a three-dimensional (3D) model of the vaccine construct was generated, refined, and validated for structural stability and immune response capabilities. Molecular docking and simulations confirmed the vaccine construct's stability and binding affinities with TLRs, with TLR4 displaying the highest binding affinity, followed by TLR2 and TLR3. Additionally, simulations predicted robust cellular and humoral antibody-mediated immune responses elicited by the designed vaccine construct. Notably, this vaccine construct includes proteins from various pathways of Leishmania donovani (LD), which have not been previously utilized in VL vaccine design. Thus, this study opens new avenues for the development of vaccines against diverse protozoan diseases. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2023.127567 |