Neurotoxicity study of ethyl acetate extract of Zanthoxylum armatum DC. on SH-SY5Y based on ROS mediated mitochondrial apoptosis pathway

Zanthoxylum armatum DC. (ZADC) is a traditional medicinal plant with various pharmacological activities and is widely used in China, Japan, India, and other regions. Previous studies have revealed that the methanol extract of ZADC can cause neurotoxicity symptoms in rats, such as drooling, decreased...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of ethnopharmacology 2024-01, Vol.319 (Pt 3), p.117321-117321, Article 117321
Hauptverfasser: Guo, Jiafu, Yang, Nannan, Zhang, Jian, Huang, Yan, Xiang, Qiwen, Wen, Jiayu, Chen, Yan, Hu, Tingting, Qiuyan, Liu, Rao, Chaolong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Zanthoxylum armatum DC. (ZADC) is a traditional medicinal plant with various pharmacological activities and is widely used in China, Japan, India, and other regions. Previous studies have revealed that the methanol extract of ZADC can cause neurotoxicity symptoms in rats, such as drooling, decreased appetite, decreased movement, and increased respiratory rate. However, the basis of these toxic substances and the mechanism of neurotoxicity remain unclear. To evaluate the effects of ZADC on nerve cells and their damage mechanisms and discuss the possible toxic substance basis. The ethyl acetate extract of ZADC is obtained by extracting the methanol extract of ZADC with ethyl acetate. The Q-Orbitrap LC-MS/MS method was employed to analyze the chemical composition of the EA extract of ZADC. SH-SY5Y cells were incubated with different concentrations of the ethyl acetate extract of ZADC. The cytotoxicity of the extract was evaluated using CCK-8, LDH, and ROS assays, and the oxidative stress status of cells was assessed using MDA, GSH, and SOD. Cell apoptosis was detected using flow cytometry. Damage to mitochondrial function was evaluated by labeling mitochondria, ATP, and MMP with fluorescence. Cyto-C, Caspase-3, Caspase-9, Apaf-1, Bax, and reduced Bcl2 expression were measured to evaluate the activation of the mitochondrial apoptosis pathway. Finally, NAC intervention was used to detect changes in the relevant indicators. The activation of mitochondrial apoptosis pathway was evaluated by measuring Cyto-C, Caspase-3, Caspase-9, Apaf-1, and Bax and Bcl2 expression. Finally, NAC intervention was utilized to detect changes in the relevant indicators. After treating SY-SY5Y cells with EA extract from ZADC, cell viability decreased significantly, and the intracellular ROS level increased in a dose-dependent manner. Meanwhile, ZADC can cause cellular oxidative stress and increase MDA and SOD concentrations while decreasing GSH concentrations. It can also shorten the mitochondrial cristae and decrease the number of mitochondria. In contrast, it can reduce ATP synthesis in the mitochondria and mitochondrial membrane potential (MMP). Furthermore, it increased the apoptosis rate and the expression of Cyto-C, Caspase-3, Caspase-9, Apaf-1, and Bax and reduced Bcl2 expression. NAC intervention alleviated the reduction in SH-SY5Y cell survival and the accumulation of reactive oxygen species induced by the EA extract in ZADC. It also inhibits signaling pathways dominated by p
ISSN:0378-8741
1872-7573
DOI:10.1016/j.jep.2023.117321