Strategies for efficient management of microplastics to achieve life cycle assessment and circular economy

The anticipated increase in the influx of plastic waste into aquatic environments has propelled the identification and elimination of plastic waste into the global agenda. The plastics sector generates a significant volume of materials, which, due to their extended durability, accumulate rapidly in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental monitoring and assessment 2023-11, Vol.195 (11), p.1361-1361, Article 1361
Hauptverfasser: Elsamahy, Tamer, Al-Tohamy, Rania, Abdelkarim, Esraa A., Zhu, Daochen, El-Sheekh, Mostafa, Sun, Jianzhong, Ali, Sameh S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The anticipated increase in the influx of plastic waste into aquatic environments has propelled the identification and elimination of plastic waste into the global agenda. The plastics sector generates a significant volume of materials, which, due to their extended durability, accumulate rapidly in natural ecosystems. Consequently, this indiscriminate utilization, along with the deposition of plastic waste (PW) in landfills and inadequate recycling practices, leads to diverse economic, social, and environmental consequences. Microplastics (MPs) are a type of PW that has been fragmented into particles measuring less than 5 mm. These particles have been found in several environments, including the air, soil, freshwater, and ocean ecosystems, where they accumulate in large quantities. In order to gain insight into the ecological risks and resource implications associated with a plastic product, it is strongly advised to conduct life cycle and sustainability analyses. Therefore, this paper examines various strategies aimed at achieving effective management of MP waste in order to develop a conceptual framework for MPs in circular economy and life cycle assessment (LCA). The findings of this study provides a new avenue for future research and contribution to manage MP waste as well as reduce their environmentally hazardous impact.
ISSN:0167-6369
1573-2959
DOI:10.1007/s10661-023-11955-7