Resolution enhancement via guided filtering for spatial-frequency multiplexing single-shot high-speed imaging

The frequency recognition algorithm for multiple exposures (FRAME) is a progressive single-shot high-speed videography technique that employs the spatial-frequency multiplexing concept to provide high temporal and spatial resolution. However, the inherent crosstalk from the zero-frequency component...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2023-10, Vol.31 (21), p.34074-34087
Hauptverfasser: Li, Hang, Li, YaHui, Sun, BoNan, He, Kai, Gao, GuiLong, Chen, Ping, Song, WenYan, Wang, Xing, Tian, JinShou
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The frequency recognition algorithm for multiple exposures (FRAME) is a progressive single-shot high-speed videography technique that employs the spatial-frequency multiplexing concept to provide high temporal and spatial resolution. However, the inherent crosstalk from the zero-frequency component to the carrier-frequency component leads to resolution degradation and artifacts. To improve recovered frames’ quality, we propose a FRAME reconstruction method using guided filters for a removal of the zero-frequency component, which can minimize the artifacts while enhance spatial resolution. A total variation (TV) denoising operation is involved to remove artifacts further to achieve optimized performances. Simulations and experiments were conducted to demonstrate the robust and efficient post-processing capability of the proposed method. With a two-frame experimental system, the results of a USAF 1951 resolution target reveal a 1.8-fold improvement in spatial resolution from 16 lp/mm to 28.5 lp/mm. For complex dynamic scenarios, the wide field of high-speed fuel spray was shot and the proposed method can resolve two droplets with a 30 μ m distance which outperforms the traditional method.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.501678