Black carbon emissions inventory and scenario analysis for Pakistan

Black carbon (BC) emissions, resulting from the incomplete combustion of carbonaceous fuels, have been extensively linked to adverse impacts on air quality, climate change, and public health. Nevertheless, there is currently a lack of a comprehensive analysis that integrates activity-based BC emissi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental pollution (1987) 2024-01, Vol.340, p.122745-122745, Article 122745
Hauptverfasser: Mir, Kaleem Anwar, Purohit, Pallav, Ijaz, Muhammad, Babar, Zaeem Bin, Mehmood, Shahbaz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Black carbon (BC) emissions, resulting from the incomplete combustion of carbonaceous fuels, have been extensively linked to adverse impacts on air quality, climate change, and public health. Nevertheless, there is currently a lack of a comprehensive analysis that integrates activity-based BC emissions inventory and scenario analysis at the national/regional, sectoral, and sub-sectoral levels in Pakistan. This study aims to fill this gap by conducting a comprehensive evaluation of Pakistan's BC emissions inventory for 2021 along projecting emissions until 2050 under the reference emission scenario (RES) and the accelerated reduction scenario (ARS) using the GAINS modeling framework to assess the potential impact of mitigation measures. This study takes a unique approach by considering commonly overlooked sources of BC emissions, such as kerosene lighting, brick kilns, diesel generator sets, and natural gas flaring, which are not typically included in conventional analyses. National BC emissions in 2021 were estimated at 181 kt, with residential combustion being the major contributor, accounting for more than half (108 kt) of the total emissions. The transport, industry, waste, agriculture, power plants, and fuel conversion sectors contributed 26.1 kt, 20.1 kt, 10.7 kt, 8.9 kt, 6.0 kt, and 0.9 kt, respectively. We anticipate that the total BC emissions in Pakistan will reach 201 kt under the RES and 41 kt under the ARS scenario by the year 2050. The ARS achieves substantial BC reductions by the adoption of cleaner fuels, improved biomass stoves, end-of-pipe emission control technologies with higher removal efficiencies, and implementing a ban on the open burning of waste and crop residues. This study underscores the considerable potential for reducing BC emissions across various sectors in Pakistan over the next three decades. [Display omitted] •For 2021, Pakistan's BC emissions inventory showed total emissions at 181 kt.•The GAINS model is used to integrate new BC emissions source categories.•Modeling BC emissions mitigation in reference and accelerated reduction scenarios.•Advanced measures may cut three-quarters of BC emissions in the next 30 years.•Clean cooking and advanced measures will cut significant BC emissions in Pakistan.
ISSN:0269-7491
1873-6424
DOI:10.1016/j.envpol.2023.122745