Using regular and transcriptomic analyses to investigate the biotransformation mechanism and phytotoxic effects of 6:2 fluorotelomer carboxylic acid (6:2 FTCA) in pumpkin (Cucurbita maxima L.)

Although 6:2 fluorotelomer carboxylic acid (6:2 FTCA), which is one of the most popular substitutes for perfluorooctanoic acid (PFOA), has been widely distributed in environments, little is known about its biotransformation mechanism and phytotoxic effects in plants. Here, we showed that 6:2 FTCA co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2024-01, Vol.906, p.167901-167901, Article 167901
Hauptverfasser: Chi, Fanghui, Zhao, Jingyan, Yang, Liping, Yang, Xiaojing, Zhao, Xv, Zhao, Shuyan, Zhan, Jingjing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although 6:2 fluorotelomer carboxylic acid (6:2 FTCA), which is one of the most popular substitutes for perfluorooctanoic acid (PFOA), has been widely distributed in environments, little is known about its biotransformation mechanism and phytotoxic effects in plants. Here, we showed that 6:2 FTCA could be taken up by pumpkin (Cucurbita maxima L.) roots from exposure solution and acropetally translocated to shoots. Biotransformation of 6:2 FTCA to different carbon chain perfluorocarboxylic acid (PFCA) metabolites (C2-C7) via α-and β-oxidation in pumpkin was observed, and perfluorohexanoic acid (PFHxA) was the major transformation product. The results of enzyme assays, enzyme inhibition experiments and gene expression analysis indicated that cytochrome P450 (CYP450), glutathione-S-transferase (GST) and ATP-binding cassette (ABC) transporters were involved in the metabolism of 6:2 FTCA in pumpkin. Plant-associated rhizobacteria and endophyte also contributed to 6:2 FTCA degradation through β-oxidation. The chlorophyll (Chl) content and genes involved in photosynthesis were significantly improved by 6:2 FTCA. The reductions of antioxidant and metabolic enzyme activities reflected the antioxidant defense system and detoxification system of pumpkin were both damaged, which were further confirmed by the down-regulating associated genes encoding phenylpropanoid biosynthesis, endoplasmic reticulum-related proteins, ascorbate-glutathione cycle and ABC transporters. This study is helpful to understand the environmental behaviors and toxicological molecular mechanisms of 6:2 FTCA in plants. [Display omitted] •Pumpkin roots could take up and acropetally translocate 6:2 FTCA.•6:2 FTCA was biotransformed by plant to PFCAs (C2-C7) through α- and β-oxidation.•Both plant enzymes and plant-associated bacteria contributed to 6:2 FTCA degradation.•6:2 FTCA promoted photosynthesis but damaged antioxidant and detoxification systems.•Differentially expressed genes were significantly induced in response to 6:2 FTCA.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2023.167901