Seismic response of earth dam with varying depth of liquefiable foundation layer

Earthquake induced liquefaction continues to be a major threat to many engineered structures around the world. Analysis of liquefaction becomes particularly difficult for two-dimensional (and 3D) problems such as dam/foundation systems. Predominantly, analyses for such systems are performed utilizin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soil dynamics and earthquake engineering (1984) 2006-11, Vol.26 (11), p.1028-1037
Hauptverfasser: Sharp, M.K., Adalier, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Earthquake induced liquefaction continues to be a major threat to many engineered structures around the world. Analysis of liquefaction becomes particularly difficult for two-dimensional (and 3D) problems such as dam/foundation systems. Predominantly, analyses for such systems are performed utilizing some type of finite element or finite difference procedure. Verification or validation of the analyses relies on very limited field performance data with reduced knowledge of the full scope of system conditions or loading conditions. Research reported in this paper represents a portion of ongoing work to obtain a database of information useful for numerical model calibration and to gain a better understanding of the complex dynamics of liquefying foundations under earth dams. Specifically, a highly instrumented model of an earth dam with clay core founded on a liquefiable foundation subjected to earthquake loading is being studied. Properties of the liquefiable foundation are varied to determine the related effects on the overlying earth dam. In this paper, results from three centrifuge physical models will be presented. The models are identical, with the exception of the location (depth) of a liquefiable layer in the foundation, and are subjected to the same dynamic excitation. Results and discussion related to the significance of the liquefiable layer location within the foundation and damage to the earth dam are presented.
ISSN:0267-7261
1879-341X
DOI:10.1016/j.soildyn.2006.02.007