Wavelet analysis of high-frequency damper behaviour

Abstract This paper describes research into the performance of a hydraulic automotive damper at frequencies up to 500 Hz. A review of published literature found little information on damper behaviour above 30 Hz. Design of vehicles for low levels of noise, vibration, and harshness (NVH) requires att...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering Journal of automobile engineering, 2005-08, Vol.219 (8), p.977-988
Hauptverfasser: Yung, V Y B, Cole, D J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract This paper describes research into the performance of a hydraulic automotive damper at frequencies up to 500 Hz. A review of published literature found little information on damper behaviour above 30 Hz. Design of vehicles for low levels of noise, vibration, and harshness (NVH) requires attention to these higher frequencies. The high-frequency force-velocity behaviour of a monotube damper was measured. Excitations included two-frequency inputs and a random input. In addition to traditional data analysis methods, techniques based on the wavelet transform were used. The results indicate that friction and hydraulic valve flow at near-zero velocity are important mechanisms in determining high-frequency force generation. Another significant mechanism is the transition between notch (leakage) flow and disc valve flow.
ISSN:0954-4070
2041-2991
DOI:10.1243/095440705X11248