Flavonoid extract from propolis alleviates periodontitis by boosting periodontium regeneration and inflammation resolution via regulating TLR4/MyD88/NF-κB and RANK/NF-κB pathway

In traditional Chinese medicine, propolis has been used for treating oral diseases for centuries, widely. Flavonoid extract is the main active ingredient in propolis, which has attracted extensive attention in recent years. The objective and novelty of the current study aims to identify the mechanis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of ethnopharmacology 2024-01, Vol.319 (Pt 3), p.117324-117324, Article 117324
Hauptverfasser: Tang, Maomao, Wang, Guichun, Li, Jiaxin, Wang, Yuxiao, Peng, Chengjun, Chang, Xiangwei, Guo, Jian, Gui, Shuangying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In traditional Chinese medicine, propolis has been used for treating oral diseases for centuries, widely. Flavonoid extract is the main active ingredient in propolis, which has attracted extensive attention in recent years. The objective and novelty of the current study aims to identify the mechanism of total flavonoid extract of propolis (TFP) for the treatment of periodontitis, and evaluate the therapeutic effect of TFP-loaded liquid crystal hydrogel (TFP-LLC) in rats with periodontitis. In this study, we used lipopolysaccharide-stimulated periodontal ligament stem cells (PDLSCs) to construct in vitro inflammation model, and investigated the anti-inflammatory effect of TFP by expression levels of inflammatory factors. Osteogenic differentiation was assessed using alkaline phosphatase activity and alizarin red staining. Meanwhile, the expression of toll like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), nuclear factor-kappa B (NF-κB), receptor activator of NF-κB (RANK) etc, were quantitated to investigate the therapeutic mechanism of TFP. Finally, we constructed TFP-LLC using a self-emulsification method and administered it to rats with periodontitis via periodontal pocket injection to evaluate the therapeutic effects. The therapeutic index, microcomputed tomography (Micro-CT), H&E staining, TRAP staining, and Masson staining were used for this evaluation. TFP reduced the expression of TLR4, MyD88, NF-κB and inflammatory factor in lipopolysaccharide-stimulated PDLSCs. Meanwhile, TFP simultaneously regulating alkaline phosphatase, RANK, runt-associated transcription factor-2 and matrix metalloproteinase production to accelerate osteogenic differentiation and collagen secretion. In addition, TFP-LLC can stably anchor to the periodontal lesion site and sustainably release TFP. After four weeks of treatment with TFP-LLC, we observed a decrease in the levels of NF-κB and interleukin-1β (IL-1β) in the periodontal tissues of rats, as well as a significant reduction in inflammation in HE staining. Similarly, Micro CT results showed that TFP-LLC could significantly inhibit alveolar bone resorption, increase bone mineral density (BMD) and reduce trabecular bone space (Tb.Sp) in rats with periodontitis. Collectively, we have firstly verified the therapeutic effects and mechanisms of TFP in PDLSCs for periodontitis treatment. Our results indicate that TFP perform anti-inflammatory and tissue repair activities through TLR4/MyD88/NF-κB and RAN
ISSN:0378-8741
1872-7573
DOI:10.1016/j.jep.2023.117324