Nonlinear Longitudinal Vibrations of Transversally Polarized Piezoceramics: Experiments and Modeling
Nonlinear behavior of piezoceramics at strong electric fields is a well-known phenomenon and is described by various hysteresis curves. On the other hand, nonlinear vibration behavior of piezoceramics at weak electric fields has recently been attracting considerable attention. Ultrasonic motors (USM...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2004-07, Vol.36 (1), p.51-73 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nonlinear behavior of piezoceramics at strong electric fields is a well-known phenomenon and is described by various hysteresis curves. On the other hand, nonlinear vibration behavior of piezoceramics at weak electric fields has recently been attracting considerable attention. Ultrasonic motors (USM) utilize the piezoceramics at relatively weak electric fields near the resonance. The consistent efforts to improve the performance of these motors has led to a detailed investigation of their nonlinear behavior. Typical nonlinear dynamic effects can be observed, even if only the stator is experimentally investigated. At weak electric fields, the vibration behavior of piezoceramics is usually described by constitutive relations linearized around an operating point. However, in experiments at weak electric fields with longitudinal vibrations of piezoceramic rods, a typical nonlinear vibration behavior similar to that of the USM-stator is observed at near-resonance frequency excitations. The observed behavior is that of a softening Duffing-oscillator, including jump phenomena and multiple stable amplitude responses at the same excitation frequency and voltage. Other observed phenomena are the decrease of normalized amplitude responses with increasing excitation voltage and the presence of superharmonics in spectra. In this paper, we have attempted to model the nonlinear behavior using higher order (quadratic and cubic) conservative and dissipative terms in the constitutive equations. Hamilton's principle and the Ritz method is used to obtain the equation of motion that is solved using perturbation techniques. Using this solution, nonlinear parameters can be fitted from the experimental data. As an alternative approach, the partial differential equation is directly solved using perturbation techniques. The results of these two different approaches are compared. |
---|---|
ISSN: | 0924-090X |