MoTe2/InN van der Waals heterostructures for gas sensors: a DFT study

Vertical van der Waals (vdW) heterostructures have shown potential for gas sensing owing to their remarkable sensitivity. However, the optimization process for achieving the best gas sensing performance is complicated by the heterostructure's reliance on both physical and electrical characteris...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2023-11, Vol.25 (42), p.28677-28690
Hauptverfasser: Jaafar Abdul-Aziz Mehrez, Chen, Xiyu, Zeng, Min, Yang, Jianhua, Hu, Nantao, Wang, Tao, Liu, Ruili, Xu, Lin, González-Alfaro, Yorexis, Yang, Zhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vertical van der Waals (vdW) heterostructures have shown potential for gas sensing owing to their remarkable sensitivity. However, the optimization process for achieving the best gas sensing performance is complicated by the heterostructure's reliance on both physical and electrical characteristics. This study employs density functional theory (DFT) to analyse the structural and electronic parameters of a MoTe2/InN vdW heterostructure. The findings of this study indicate that the vdW heterostructure has a type-II band alignment with higher adsorption energy towards NH3, NO2, and SO2 than the individual monolayers. In specific, the heterostructure is well suited for NO2 detection but has limitations in reliably detecting NH3 and SO2 due to longer recovery times. We find significant hybridization between the adsorbate and interacting surfaces’ orbitals and a notable presence of NO2 molecular orbitals in proximity to the Fermi level. Additionally, dielectric and work function modulations offer a viable means to develop optical-based gas sensors that can selectively detect NO2. Our research provides valuable insights into vdW heterostructure design for high-performance gas sensors.
ISSN:1463-9076
1463-9084
DOI:10.1039/d3cp02906a