Hemodynamic Evaluation of Asynchronous Speed Modulation of a Continuous-Flow Left Ventricular Assist Device in an Acute-Myocardial Injury Sheep Model
Asynchronous rotational-speed modulation of a continuous-flow left ventricular assist device (LVAD) can increase pulsatility; however, the feasibility of hemodynamic modification by asynchronous modulation of an LVAD has not been sufficiently verified. We evaluated the acute effect of an asynchronou...
Gespeichert in:
Veröffentlicht in: | Annals of biomedical engineering 2024-02, Vol.52 (2), p.364-375 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Asynchronous rotational-speed modulation of a continuous-flow left ventricular assist device (LVAD) can increase pulsatility; however, the feasibility of hemodynamic modification by asynchronous modulation of an LVAD has not been sufficiently verified. We evaluated the acute effect of an asynchronous-modulation mode under LVAD support and the accumulated effect of 6 consecutive hours of driving by the asynchronous-modulation mode on hemodynamics, including both ventricles, in a coronary microembolization-induced acute-myocardial injury sheep model. We evaluated 5-min LVAD-support hemodynamics, including biventricular parameters, by switching modes from constant-speed to asynchronous-modulation in the same animals (“acute-effect evaluation under LVAD support”). To determine the accumulated effect of a certain driving period, we evaluated hemodynamics including biventricular parameters after weaning from 6-hour (6 h) LVAD support by constant-speed or asynchronous-modulation mode (“6h-effect evaluation”). The acute-effect evaluation under LVAD support revealed that, compared to the constant-speed mode, the asynchronous-modulation mode increased vascular pulsatility but did not have significantly different effects on hemodynamics, including both ventricles. The 6 h-effect evaluation revealed that the hemodynamics did not differ significantly between the two groups except for some biventricular parameters which did not indicate negative effects of the asynchronous-modulation mode on both ventricles. The asynchronous-modulation mode could be feasible to increase vascular pulsatility without causing negative effects on hemodynamics including both ventricles. Compared to the constant-speed mode, the asynchronous-modulation mode increased pulsatility during LVAD support without negative effects on hemodynamics including both ventricles in the acute phase. Six hours of LVAD support with the asynchronous-modulation mode exerted no negative effects on hemodynamics, including both ventricles, after weaning from the LVAD. |
---|---|
ISSN: | 0090-6964 1573-9686 1573-9686 |
DOI: | 10.1007/s10439-023-03383-y |