A novel mixed reality-guided dental implant placement navigation system based on virtual-actual registration

The key to successful dental implant surgery is to place the implants accurately along the pre-operative planned paths. The application of surgical navigation systems can significantly improve the safety and accuracy of implantation. However, the frequent shift of the views of the surgeon between th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2023-11, Vol.166, p.107560, Article 107560
Hauptverfasser: Fan, Xingqi, Tao, Baoxin, Tu, Puxun, Shen, Yihan, Wu, Yiqun, Chen, Xiaojun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The key to successful dental implant surgery is to place the implants accurately along the pre-operative planned paths. The application of surgical navigation systems can significantly improve the safety and accuracy of implantation. However, the frequent shift of the views of the surgeon between the surgical site and the computer screen causes troubles, which is expected to be solved by the introduction of mixed-reality technology through the wearing of HoloLens devices by enabling the alignment of the virtual three-dimensional (3D) image with the actual surgical site in the same field of view. This study utilized mixed reality technology to enhance dental implant surgery navigation. Our first step was reconstructing a virtual 3D model from pre-operative cone-beam CT (CBCT) images. We then obtained the relative position between objects using the navigation device and HoloLens camera. Via the algorithms of virtual-actual registration, the transformation matrixes between the HoloLens devices and the navigation tracker were acquired through the HoloLens-tracker registration, and the transformation matrixes between the virtual model and the patient phantom through the image-phantom registration. In addition, the algorithm of surgical drill calibration assisted in acquiring transformation matrixes between the surgical drill and the patient phantom. These algorithms allow real-time tracking of the surgical drill's location and orientation relative to the patient phantom under the navigation device. With the aid of the HoloLens 2, virtual 3D images and actual patient phantoms can be aligned accurately, providing surgeons with a clear visualization of the implant path. Phantom experiments were conducted using 30 patient phantoms, with a total of 102 dental implants inserted. Comparisons between the actual implant paths and the pre-operatively planned implant paths showed that our system achieved a coronal deviation of 1.507 ± 0.155 mm, an apical deviation of 1.542 ± 0.143 mm, and an angular deviation of 3.468 ± 0.339°. The deviation was not significantly different from that of the navigation-guided dental implant placement but better than the freehand dental implant placement. Our proposed system realizes the integration of the pre-operative planned dental implant paths and the patient phantom, which helps surgeons achieve adequate accuracy in traditional dental implant surgery. Furthermore, this system is expected to be applicable to animal and cadaveric experim
ISSN:0010-4825
1879-0534
1879-0534
DOI:10.1016/j.compbiomed.2023.107560