The role of aorta distal to stent in the occurrence of distal stent graft-induced new entry tear: A computational fluid dynamics and morphological study

Distal stent graft-induced new entry tear (dSINE) is an important complication of thoracic endovascular aortic repair (TEVAR) for the treatment of type B aortic dissection (TBAD). This study aims to explore whether the aorta distal to the stent plays an important role in the occurrence of dSINE. Six...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2023-11, Vol.166, p.107554, Article 107554
Hauptverfasser: Luan, Jingyang, Qiao, Yonghui, Mao, Le, Fan, Jianren, Zhu, Ting, Luo, Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Distal stent graft-induced new entry tear (dSINE) is an important complication of thoracic endovascular aortic repair (TEVAR) for the treatment of type B aortic dissection (TBAD). This study aims to explore whether the aorta distal to the stent plays an important role in the occurrence of dSINE. Sixty-nine patient-specific geometrical models of twenty-three enrolled patients were reconstructed from preoperative, postoperative, and predSINE computed tomography scans. Computational fluid dynamics (CFD) simulations were performed to calculate the von Mises stress in the CFD group. Meanwhile, morphological measurements were performed in all patients, including measurements of the inverted pyramid index at different follow-up time points and the postoperative true lumen volume change rate. In the CFD study, the time-averaged von Mises stress of the true lumen distal to the stent in dSINE patients was significantly higher than that in the CFD controls (20.42 kPa vs. 15.47 kPa). In the morphological study, a special aortic plane (plane A) with an extremely small area distal to the stent was observed in dSINE patients, which resulted in an inverted pyramid structure in the true lumen distal to the stent. This structure in dSINE patients became increasingly obvious during the follow-up period and finally reached the maximum value before dSINE occurred (mean, 3.91 vs. 1.23). At the same time, enlargement of the true lumen distal to the stent occurs before dSINE, manifesting as a continuous increase in the true lumen volume (mean, 0.70 vs. 013). A new theory of what causes dSINE to occur has been proposed: the inverted pyramid structure of the true lumen distal to the stent caused an increase in the von Mises stress in this region and aortic enlargement, which ultimately led to the occurrence of dSINE. •The interaction between the blood flow, stent-graft, and aortic wall was considered.•Time-averaged von Mises stress of the true lumen distal to the stent was evaluated.•An inverted pyramid structure was observed after thoracic endovascular aortic repair.•A new theory of what causes dSINE to occur has been first proposed.
ISSN:0010-4825
1879-0534
1879-0534
DOI:10.1016/j.compbiomed.2023.107554