Regulation of biophysical drivers on carbon and water fluxes over a warm-temperate plantation in northern China
Plantations have great potential for carbon sequestration and play a vital role in the water cycle. However, it is challenging to accurately estimate the carbon and water fluxes of plantations, and the impact of biophysical drivers on the coupling of carbon and water fluxes is not well understood. T...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2024-01, Vol.907, p.167408-167408, Article 167408 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Plantations have great potential for carbon sequestration and play a vital role in the water cycle. However, it is challenging to accurately estimate the carbon and water fluxes of plantations, and the impact of biophysical drivers on the coupling of carbon and water fluxes is not well understood. Thus, we modified the phenology module of the Biome-BGC model and optimized the parameters with the aim of simulating the gross primary productivity (GPP), evapotranspiration (ET) and water use efficiency (WUE) of a warm-temperate plantation in northern China from 2009 to 2020. Photosynthetically active radiation (PAR) showed significant positive correlations on GPP and WUE during the first stage of the growing season (S1: from early April to late July). Active accumulated temperature (Taa) mainly controlled the changes in GPP and ET during the second stage (S2: between the end of July and early November). Throughout the growing season, soil water content dominated daily GPP and WUE, whereas Taa regulated ET. The optimized Biome-BGC model performed better than the original model in simulating GPP and ET. Compared with the values simulated by the original model, root mean square error decreased by 7.89 % and 15.97 % for the simulated GPP and ET, respectively, while the determination coefficient increased from 0.77 to 0.81 for simulated GPP and from 0.51 to 0.62 for simulated ET. The results of this study demonstrated that the optimized model more accurately assessed carbon sequestration and water consumption in plantations.
[Display omitted]
•GPP was mainly controlled by PAR at the first stage and Taa at the second stage.•ET was dominated by Taa at the first and second stages.•SOS and EOS were determined by the spring warming function to modify Biome-BGC model.•The modified model performed better in the growing season. |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2023.167408 |