A Biphasic Fluid–Structure Interaction Model of Backflow During Infusion Into Agarose Gel

The efficacy of convection-enhanced delivery as a technique to treat disorders of the central nervous system is limited by backflow, in which the infused fluid flows backward along surface of the catheter rather than toward the targeted area. In order to improve treatment protocols, finite element m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanical engineering 2023-12, Vol.145 (12)
Hauptverfasser: Ayers, Arthur D., Smith, Joshua H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The efficacy of convection-enhanced delivery as a technique to treat disorders of the central nervous system is limited by backflow, in which the infused fluid flows backward along surface of the catheter rather than toward the targeted area. In order to improve treatment protocols, finite element models of backflow have been developed to understand the underlying physics. García et al. (2013, “Description and Validation of a Finite Element Model of Backflow During Infusion Into a Brain Tissue Phantom,” ASME J. Comput. Nonlinear Dyn., 8(1), p. 011017) presented a finite element model that accounted for the flow in the annular gap that develops between the tissue and the outer surface of the catheter by using a layer of biphasic elements with a formula for the axial hydraulic conductivity to represent annular Poiseuille flow. In this study, we present a generalization of that model using fluid-FSI and biphasic-FSI elements that are recently available in febio. We demonstrate that our model of a 0.98 mm radius catheter is able to reproduce experimental backflow lengths and maximum fluid pressures for infusions into a brain tissue surrogate and that it agrees well with the previous model by García et al. (2013, “Description and Validation of a Finite Element Model of Backflow During Infusion Into a Brain Tissue Phantom,” ASME J. Comput. Nonlinear Dyn., 8(1), p. 011017). The model predicts that the backflow length and the total amount of flow into the hemispherical region forward of the catheter tip is comparable for two different catheter sizes, albeit at a higher fluid pressure for the smaller catheter. This biphasic-FSI model has the potential to be extended to a stepped catheter geometry, which has been shown in experiments to be successful in controlling backflow.
ISSN:0148-0731
1528-8951
DOI:10.1115/1.4063747