Role of senkyunolide I in the promotion of neural stem/progenitor cell proliferation via the Akt/β-catenin pathway

Following brain injury, neural stem cells (NSCs) can generate mature neurons and replace damaged cells. However, the capacity of endogenous NSCs to self-repair from injured brain is limited as most NSCs die before becoming mature neurons. Therefore, a boosting endogenous NSCs by pharmacological supp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedicine & pharmacotherapy 2023-12, Vol.168, p.115683-115683, Article 115683
Hauptverfasser: Wang, Min, Hayashi, Hideki, Horinokita, Ichiro, Asada, Mayumi, Iwatani, Yui, Ren, Jun-guo, Liu, Jian-xun, Takagi, Norio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Following brain injury, neural stem cells (NSCs) can generate mature neurons and replace damaged cells. However, the capacity of endogenous NSCs to self-repair from injured brain is limited as most NSCs die before becoming mature neurons. Therefore, a boosting endogenous NSCs by pharmacological support offers the potential to repair the damaged brain. Recently, small molecules have hold considerable promise for neuron regeneration and repair as they can penetrate the blood–brain barrier easily. Senkyunolide I (SEI) is a bioactive constituent derived from traditional Chinese medicines Ligusticum chuanxiong Hort. and Angelica sinensis (Oliv.) Diels, and was found to able to prevent ischemic stroke. This study examined the effects of SEI on the proliferation and neuronal lineage differentiation of prepared neural stem/progenitor cells (NS/PCs). The NS/PC proliferation was determined by 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt, and neurosphere formation assays. The NS/PC differentiation was also investigated by immunocytochemistry, and western blotting was employed to measure phosphorylated Akt (pAkt) and GSK-3β (pGSK-3β), and active-β-catenin protein levels. We showed that the NS/PC proliferation was enhanced after SEI exposure. Elevated cell numbers were also observed in neurospheres, which were incubated with SEI for 3 days, whereas the NS/PC differentiation was decreased after SEI exposure for 5 days. Furthermore, SEI upregulated pAkt/Akt and active-β-catenin levels and increased NS/PC proliferation after SEI treatment was reversed by phosphatidylinositol 3-kinase inhibitor LY294002. downregulated differentiated processes. Thus, SEI promoted the NS/PC proliferation and suppressed NS/PC differentiation into neurons and/or astrocytes, therefore SEI could be an interesting and promising candidate for stimulating NSCs. [Display omitted] •Senkyunolide I (SEI) enhanced the proliferation of NS/PC and downregulated the differentiated processes.•Akt/β-catenin pathway plays an important role in SEI-induced NS/PC proliferation.•Pharmacological inhibitor LY294002 prevents the proliferative effects of SEI.•SEI may be a promising candidate for stimulating NSCs.
ISSN:0753-3322
1950-6007
DOI:10.1016/j.biopha.2023.115683