Theoretical design of transition metal-doped oxo-triarylmethyl as a disposable platform for adsorption of ibuprofen

Emerging environmental contaminants have become a crucial environmental issue because of the highly toxic effluents emitted by factories. Ibuprofen (IBP), as a typical anti-inflammatory drug, is frequently detected in water sources. Therefore, its removal using various adsorbents has drawn great int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular graphics & modelling 2024-01, Vol.126, p.108647-108647, Article 108647
Hauptverfasser: Kaviani, Sadegh, Khajavian, Mohammad, Piyanzina, Irina, Nedopekin, Oleg V., Tayurskii, Dmitrii A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Emerging environmental contaminants have become a crucial environmental issue because of the highly toxic effluents emitted by factories. Ibuprofen (IBP), as a typical anti-inflammatory drug, is frequently detected in water sources. Therefore, its removal using various adsorbents has drawn great interest. Herein, the structural, electronic, energetic, and optical properties of pristine oxo-triarylmethyl (oxTAM) and transition metal-doped oxo-triarylmethyl (TM@oxTAM, TM = Sc, Ti, V, Cr, and Mn) for adsorption of the IBU drug were investigated using density functional theory (DFT) calculations implemented in Gaussian and VASP codes. Frontier molecular orbital (FMO), density of states (DOS), and electronic band structure results demonstrated that transition metal-doped oxTAM causes a significant reduction in the energy band gap (Eg) value of pristine oxTAM, with the highest decrease (30.14 %) in the case of Mn@oxTAM. It was found that transition metal doping onto oxTAM leads to an increase in the adsorption energies (1.20–2.64 eV) and charge density between transition metal and IBU. Natural bond orbital (NBO) analysis revealed that charge was effectively transferred from the IBU towards the transition metal, which was further analyzed by charge decomposition analysis (CDA). Furthermore, quantum theory of atoms in molecules (QTAIM), interaction region indicator (IRI), electron localization function (ELF), and radial distribution function (RDF) analyses revealed that the IBU is adsorbed on the Sc@oxTAM surface via covalent interactions, while electrostatic with partially covalent interactions are dominated in other IBU/TM@oxTAM complexes. The results suggest that TM doping on the oxTAM provides a new insight for developing photocatalyst-based covalent organic frameworks (COFs) to remove emerging pollutants in wastewater. [Display omitted] •Pristine and TM-decorated oxTAM are used to adsorb ibuprofen (IBU) drug.•Doping TM on oxTAM increases adsorption energy between IBU and oxTAM.•The energetic data analysis asserts exothermic and spontaneous adsorptions.•IBU and TM@oxTAM act as donor and acceptor species, respectively.
ISSN:1093-3263
1873-4243
DOI:10.1016/j.jmgm.2023.108647