Mechanism of molecular interaction of sitagliptin with human DPP4 enzyme - New Insights

Dipeptidyl peptidase 4 (DPP4) inactivates a range of bioactive peptides. The cleavage of insulinotropic peptides and glucagon-like peptide 1 (GLP1) by DPP4 directly influences glucose homeostasis. This study aimed to describe the mode of interaction between sitagliptin (an antidiabetic drug) and hum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in medical sciences 2023-09, Vol.68 (2), p.402-408
Hauptverfasser: Gonzatti, Michelangelo Bauwelz, Júnior, José Edvar Monteiro, Rocha, Antônio José, de Oliveira, Jonathas Sales, Evangelista, Antônio José de Jesus, Fonseca, Fátima Morgana Pio, Ceccatto, Vânia Marilande, de Oliveira, Ariclécio Cunha, da Cruz Freire, José Ednésio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dipeptidyl peptidase 4 (DPP4) inactivates a range of bioactive peptides. The cleavage of insulinotropic peptides and glucagon-like peptide 1 (GLP1) by DPP4 directly influences glucose homeostasis. This study aimed to describe the mode of interaction between sitagliptin (an antidiabetic drug) and human DPP4 using in silico approaches. Docking studies were conducted using AutoDock Vina, 2D and 3D schematic drawings were obtained using PoseView and PLIP servers, and the DPP4-sitagliptin complex was visualized with Pymol software. The best affinity energy to form the DPP4-sitagliptin complex was E-value ​= ​- 8.1 ​kcal ​mol−1, as indicated by docking simulations. This result suggests a strong interaction. According to our observations, hydrophobic interactions involving the amino acids residues Tyr663 and Val712, hydrogen bonds (Glu203, Glu204, Tyr663, and Tyr667), π-Stacking interactions (Phe355 and Tyr667), and halogenic bonds (Arg123, Glu204, and Arg356) were prevalent in the DPP4-sitagliptin complex. Root Mean Square Deviation prediction also demonstrated that the global structure of the human DPP4 did not have a significant change in its topology, even after the formation of the DPP4-sitagliptin complex. The stable interaction between the sitagliptin ligand and the DPP4 enzyme was demonstrated through molecular docking simulations. The findings presented in this work enhance the understanding of the physicochemical properties of the sitagliptin interaction site, supporting the design of more efficient gliptin-like iDPP4 inhibitors.
ISSN:1896-1126
1898-4002
DOI:10.1016/j.advms.2023.10.002