A spatially-controlled DNA triangular prism nanomachine for AND-gated intracellular imaging of ATP in acidic microenvironment
A DNA triangular prism nanomachine (TPN)–based logic device for intracellular AND-gated imaging of adenosine triphosphate (ATP) has been constructed. By using i-motif sequences and ATP-binding aptamers as logic control units, the TPN logic device is qualified to respond to the acidic environment and...
Gespeichert in:
Veröffentlicht in: | Mikrochimica acta (1966) 2023-11, Vol.190 (11), p.436-436, Article 436 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A DNA triangular prism nanomachine (TPN)–based logic device for intracellular AND-gated imaging of adenosine triphosphate (ATP) has been constructed. By using i-motif sequences and ATP-binding aptamers as logic control units, the TPN logic device is qualified to respond to the acidic environment and ATP in cancer cell lysosomes. Once internalized into the lysosome, the specific acidic microenvironment in lysosome causes the i-motif sequence to fold into a tetramer, resulting in compression of DNA tri-prism. Subsequently, the split ATP aptamer located at the tip of the collapsed triangular prism binds stably to ATP, which results in the fluorescent dyes (Cy3 and Cy5) modified at the ends of the split aptamer being in close proximity to each other, allowing Förster Resonance Energy Transfer (FRET) to occur. The FRET signals are excited at a wavelength of 543 nm and can be collected within the emission range of 646–730 nm. This enables the precise imaging of ATP within a cell. We also dynamically operate AND logic gates in living cells by modulating intracellular pH and ATP levels with the help of external drugs. Owing to the AND logic unit on TPN it can simultaneously recognize two targets and give corresponding intelligent logic judgment via imaging signal output. The accuracy of molecular diagnosis of cancer can be improved thus eliminating the false positive signal of single target-based detection. Hence, this space-controlled TPN-based logical sensing platform greatly avoids sensitivity to extracellular targets during the cell entry process, providing a useful tool for high-precision imaging of the cancer cell’s endogenous target ATP. |
---|---|
ISSN: | 0026-3672 1436-5073 |
DOI: | 10.1007/s00604-023-06010-8 |