Combined Gamma-Rays and Carbon-12 Nuclei Irradiation Modulates Brain Chemokine and Cytokine Production and Improves Spatial Learning in Tau P301S, but not 5xFAD Mouse Line
Earlier we showed the pro-cognitive effect of low doses of combined irradiation (including heavy charged particles) on Wistar rats. In the present work we studied the effect of irradiation (gamma-rays, 0.24 Gy; carbon-12, 0.18 Gy, 400 MeV/nucleon) on the course of neurodegenerative process using Tau...
Gespeichert in:
Veröffentlicht in: | Doklady. Biological sciences 2023-08, Vol.511 (1), p.255-258 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Earlier we showed the pro-cognitive effect of low doses of combined irradiation (including heavy charged particles) on Wistar rats. In the present work we studied the effect of irradiation (gamma-rays, 0.24 Gy; carbon-12, 0.18 Gy, 400 MeV/nucleon) on the course of neurodegenerative process using Tau P301S and 5xFAD transgenic mice lines, experimental models of Alzheimer’s disease. Irradiation led to an increase in pro- and anti-inflammatory cytokines and chemokines (IL-2, IL-6, IL-10, KC) in Tau P301S mice, but not in 5xFAD. At the same time, only the Tau P301S line was found to exhibit radiation-induced improvement in spatial learning. |
---|---|
ISSN: | 0012-4966 1608-3105 |
DOI: | 10.1134/S0012496623700424 |