Overcharge reaction of lithium-ion batteries

Overcharge reaction was studied in detail using 650 mAh prismatic hermetically sealed lithium-ion batteries with LiCoO 2 cathodes, graphitic carbon anodes and ethylene carbonate/ethyl methyl carbonate (EC/EMC) electrolytes. Several varieties of gases (CO 2, CO, H 2, CH 4, C 2H 6 and C 2H 4) were evo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2005-08, Vol.146 (1), p.97-100
Hauptverfasser: Ohsaki, Takahisa, Kishi, Takashi, Kuboki, Takashi, Takami, Norio, Shimura, Nao, Sato, Yuichi, Sekino, Masahiro, Satoh, Asako
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100
container_issue 1
container_start_page 97
container_title Journal of power sources
container_volume 146
creator Ohsaki, Takahisa
Kishi, Takashi
Kuboki, Takashi
Takami, Norio
Shimura, Nao
Sato, Yuichi
Sekino, Masahiro
Satoh, Asako
description Overcharge reaction was studied in detail using 650 mAh prismatic hermetically sealed lithium-ion batteries with LiCoO 2 cathodes, graphitic carbon anodes and ethylene carbonate/ethyl methyl carbonate (EC/EMC) electrolytes. Several varieties of gases (CO 2, CO, H 2, CH 4, C 2H 6 and C 2H 4) were evolved in the overcharge reaction. The amount of gas increased with the increase in the cell temperature and rose rapidly at the end of the overcharge. In particular, the amount of CO 2 gas produced by the oxidation of the electrolyte at the cathode increased markedly. The exothermic oxidation reaction of the electrolyte was accelerated at the temperature above 60 °C, causing the cell temperature to increase rapidly thereafter. The heating tests of the overcharged anode samples enclosed in cylindrical cell cases with EC/EMC electrolytes resulted in thermal runaways. In contrast, the overcharged cathodes tested in the same manner showed no thermal runaway. The thermal runaway reaction during overcharge was caused by the violent reaction between the overcharged anode (deposited lithium) and the electrolyte solvent at high temperature that was the result of the rapid exothermic reaction of the delithiated cathode and the electrolyte.
doi_str_mv 10.1016/j.jpowsour.2005.03.105
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28768512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775305005112</els_id><sourcerecordid>28768512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-d914bb63a7f7306c49858e1c427d9bd8ed3fc17d9223002976c77d17fdfa36193</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwC6gbWJHgR2wnO1DFS6rUDawtxx5TR2lc7KSIvydRQSxZzczVmbmai9AlwTnBRNw2ebMLnykMMacY8xyzUedHaEZKyTIqOT9GM8xkmUnJ2Sk6S6nBGBMi8QzdrPcQzUbHd1hE0Kb3oVsEt2h9v_HDNpvGWvc9RA_pHJ043Sa4-Klz9Pb48Lp8zlbrp5fl_SozBav6zFakqGvBtHSSYWGKquQlEFNQaavalmCZM2TsKWUY00oKI6Ul0lmnmSAVm6Prw91dDB8DpF5tfTLQtrqDMCRFSylKTugIigNoYkgpglO76Lc6fimC1RSOatRvOGoKR2E26nxcvPpx0Mno1kXdGZ_-tiURFRcTd3fgYHx37yGqZDx0BqyPYHplg__P6hu2nX2l</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28768512</pqid></control><display><type>article</type><title>Overcharge reaction of lithium-ion batteries</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ohsaki, Takahisa ; Kishi, Takashi ; Kuboki, Takashi ; Takami, Norio ; Shimura, Nao ; Sato, Yuichi ; Sekino, Masahiro ; Satoh, Asako</creator><creatorcontrib>Ohsaki, Takahisa ; Kishi, Takashi ; Kuboki, Takashi ; Takami, Norio ; Shimura, Nao ; Sato, Yuichi ; Sekino, Masahiro ; Satoh, Asako</creatorcontrib><description>Overcharge reaction was studied in detail using 650 mAh prismatic hermetically sealed lithium-ion batteries with LiCoO 2 cathodes, graphitic carbon anodes and ethylene carbonate/ethyl methyl carbonate (EC/EMC) electrolytes. Several varieties of gases (CO 2, CO, H 2, CH 4, C 2H 6 and C 2H 4) were evolved in the overcharge reaction. The amount of gas increased with the increase in the cell temperature and rose rapidly at the end of the overcharge. In particular, the amount of CO 2 gas produced by the oxidation of the electrolyte at the cathode increased markedly. The exothermic oxidation reaction of the electrolyte was accelerated at the temperature above 60 °C, causing the cell temperature to increase rapidly thereafter. The heating tests of the overcharged anode samples enclosed in cylindrical cell cases with EC/EMC electrolytes resulted in thermal runaways. In contrast, the overcharged cathodes tested in the same manner showed no thermal runaway. The thermal runaway reaction during overcharge was caused by the violent reaction between the overcharged anode (deposited lithium) and the electrolyte solvent at high temperature that was the result of the rapid exothermic reaction of the delithiated cathode and the electrolyte.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2005.03.105</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Applied sciences ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Exact sciences and technology ; Lithium-ion battery ; Overcharge ; Rechargeable cell ; Safety ; Thermal runaway</subject><ispartof>Journal of power sources, 2005-08, Vol.146 (1), p.97-100</ispartof><rights>2005 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-d914bb63a7f7306c49858e1c427d9bd8ed3fc17d9223002976c77d17fdfa36193</citedby><cites>FETCH-LOGICAL-c439t-d914bb63a7f7306c49858e1c427d9bd8ed3fc17d9223002976c77d17fdfa36193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378775305005112$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17169565$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ohsaki, Takahisa</creatorcontrib><creatorcontrib>Kishi, Takashi</creatorcontrib><creatorcontrib>Kuboki, Takashi</creatorcontrib><creatorcontrib>Takami, Norio</creatorcontrib><creatorcontrib>Shimura, Nao</creatorcontrib><creatorcontrib>Sato, Yuichi</creatorcontrib><creatorcontrib>Sekino, Masahiro</creatorcontrib><creatorcontrib>Satoh, Asako</creatorcontrib><title>Overcharge reaction of lithium-ion batteries</title><title>Journal of power sources</title><description>Overcharge reaction was studied in detail using 650 mAh prismatic hermetically sealed lithium-ion batteries with LiCoO 2 cathodes, graphitic carbon anodes and ethylene carbonate/ethyl methyl carbonate (EC/EMC) electrolytes. Several varieties of gases (CO 2, CO, H 2, CH 4, C 2H 6 and C 2H 4) were evolved in the overcharge reaction. The amount of gas increased with the increase in the cell temperature and rose rapidly at the end of the overcharge. In particular, the amount of CO 2 gas produced by the oxidation of the electrolyte at the cathode increased markedly. The exothermic oxidation reaction of the electrolyte was accelerated at the temperature above 60 °C, causing the cell temperature to increase rapidly thereafter. The heating tests of the overcharged anode samples enclosed in cylindrical cell cases with EC/EMC electrolytes resulted in thermal runaways. In contrast, the overcharged cathodes tested in the same manner showed no thermal runaway. The thermal runaway reaction during overcharge was caused by the violent reaction between the overcharged anode (deposited lithium) and the electrolyte solvent at high temperature that was the result of the rapid exothermic reaction of the delithiated cathode and the electrolyte.</description><subject>Applied sciences</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Exact sciences and technology</subject><subject>Lithium-ion battery</subject><subject>Overcharge</subject><subject>Rechargeable cell</subject><subject>Safety</subject><subject>Thermal runaway</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwC6gbWJHgR2wnO1DFS6rUDawtxx5TR2lc7KSIvydRQSxZzczVmbmai9AlwTnBRNw2ebMLnykMMacY8xyzUedHaEZKyTIqOT9GM8xkmUnJ2Sk6S6nBGBMi8QzdrPcQzUbHd1hE0Kb3oVsEt2h9v_HDNpvGWvc9RA_pHJ043Sa4-Klz9Pb48Lp8zlbrp5fl_SozBav6zFakqGvBtHSSYWGKquQlEFNQaavalmCZM2TsKWUY00oKI6Ul0lmnmSAVm6Prw91dDB8DpF5tfTLQtrqDMCRFSylKTugIigNoYkgpglO76Lc6fimC1RSOatRvOGoKR2E26nxcvPpx0Mno1kXdGZ_-tiURFRcTd3fgYHx37yGqZDx0BqyPYHplg__P6hu2nX2l</recordid><startdate>20050826</startdate><enddate>20050826</enddate><creator>Ohsaki, Takahisa</creator><creator>Kishi, Takashi</creator><creator>Kuboki, Takashi</creator><creator>Takami, Norio</creator><creator>Shimura, Nao</creator><creator>Sato, Yuichi</creator><creator>Sekino, Masahiro</creator><creator>Satoh, Asako</creator><general>Elsevier B.V</general><general>Elsevier Sequoia</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20050826</creationdate><title>Overcharge reaction of lithium-ion batteries</title><author>Ohsaki, Takahisa ; Kishi, Takashi ; Kuboki, Takashi ; Takami, Norio ; Shimura, Nao ; Sato, Yuichi ; Sekino, Masahiro ; Satoh, Asako</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-d914bb63a7f7306c49858e1c427d9bd8ed3fc17d9223002976c77d17fdfa36193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Exact sciences and technology</topic><topic>Lithium-ion battery</topic><topic>Overcharge</topic><topic>Rechargeable cell</topic><topic>Safety</topic><topic>Thermal runaway</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohsaki, Takahisa</creatorcontrib><creatorcontrib>Kishi, Takashi</creatorcontrib><creatorcontrib>Kuboki, Takashi</creatorcontrib><creatorcontrib>Takami, Norio</creatorcontrib><creatorcontrib>Shimura, Nao</creatorcontrib><creatorcontrib>Sato, Yuichi</creatorcontrib><creatorcontrib>Sekino, Masahiro</creatorcontrib><creatorcontrib>Satoh, Asako</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohsaki, Takahisa</au><au>Kishi, Takashi</au><au>Kuboki, Takashi</au><au>Takami, Norio</au><au>Shimura, Nao</au><au>Sato, Yuichi</au><au>Sekino, Masahiro</au><au>Satoh, Asako</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overcharge reaction of lithium-ion batteries</atitle><jtitle>Journal of power sources</jtitle><date>2005-08-26</date><risdate>2005</risdate><volume>146</volume><issue>1</issue><spage>97</spage><epage>100</epage><pages>97-100</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>Overcharge reaction was studied in detail using 650 mAh prismatic hermetically sealed lithium-ion batteries with LiCoO 2 cathodes, graphitic carbon anodes and ethylene carbonate/ethyl methyl carbonate (EC/EMC) electrolytes. Several varieties of gases (CO 2, CO, H 2, CH 4, C 2H 6 and C 2H 4) were evolved in the overcharge reaction. The amount of gas increased with the increase in the cell temperature and rose rapidly at the end of the overcharge. In particular, the amount of CO 2 gas produced by the oxidation of the electrolyte at the cathode increased markedly. The exothermic oxidation reaction of the electrolyte was accelerated at the temperature above 60 °C, causing the cell temperature to increase rapidly thereafter. The heating tests of the overcharged anode samples enclosed in cylindrical cell cases with EC/EMC electrolytes resulted in thermal runaways. In contrast, the overcharged cathodes tested in the same manner showed no thermal runaway. The thermal runaway reaction during overcharge was caused by the violent reaction between the overcharged anode (deposited lithium) and the electrolyte solvent at high temperature that was the result of the rapid exothermic reaction of the delithiated cathode and the electrolyte.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2005.03.105</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2005-08, Vol.146 (1), p.97-100
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_28768512
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Exact sciences and technology
Lithium-ion battery
Overcharge
Rechargeable cell
Safety
Thermal runaway
title Overcharge reaction of lithium-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A05%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overcharge%20reaction%20of%20lithium-ion%20batteries&rft.jtitle=Journal%20of%20power%20sources&rft.au=Ohsaki,%20Takahisa&rft.date=2005-08-26&rft.volume=146&rft.issue=1&rft.spage=97&rft.epage=100&rft.pages=97-100&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2005.03.105&rft_dat=%3Cproquest_cross%3E28768512%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28768512&rft_id=info:pmid/&rft_els_id=S0378775305005112&rfr_iscdi=true