Overcharge reaction of lithium-ion batteries

Overcharge reaction was studied in detail using 650 mAh prismatic hermetically sealed lithium-ion batteries with LiCoO 2 cathodes, graphitic carbon anodes and ethylene carbonate/ethyl methyl carbonate (EC/EMC) electrolytes. Several varieties of gases (CO 2, CO, H 2, CH 4, C 2H 6 and C 2H 4) were evo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2005-08, Vol.146 (1), p.97-100
Hauptverfasser: Ohsaki, Takahisa, Kishi, Takashi, Kuboki, Takashi, Takami, Norio, Shimura, Nao, Sato, Yuichi, Sekino, Masahiro, Satoh, Asako
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Overcharge reaction was studied in detail using 650 mAh prismatic hermetically sealed lithium-ion batteries with LiCoO 2 cathodes, graphitic carbon anodes and ethylene carbonate/ethyl methyl carbonate (EC/EMC) electrolytes. Several varieties of gases (CO 2, CO, H 2, CH 4, C 2H 6 and C 2H 4) were evolved in the overcharge reaction. The amount of gas increased with the increase in the cell temperature and rose rapidly at the end of the overcharge. In particular, the amount of CO 2 gas produced by the oxidation of the electrolyte at the cathode increased markedly. The exothermic oxidation reaction of the electrolyte was accelerated at the temperature above 60 °C, causing the cell temperature to increase rapidly thereafter. The heating tests of the overcharged anode samples enclosed in cylindrical cell cases with EC/EMC electrolytes resulted in thermal runaways. In contrast, the overcharged cathodes tested in the same manner showed no thermal runaway. The thermal runaway reaction during overcharge was caused by the violent reaction between the overcharged anode (deposited lithium) and the electrolyte solvent at high temperature that was the result of the rapid exothermic reaction of the delithiated cathode and the electrolyte.
ISSN:0378-7753
1873-2755
DOI:10.1016/j.jpowsour.2005.03.105