Trifocal Relative Pose From Lines at Points

We present a method for solving two minimal problems for relative camera pose estimation from three views, which are based on three view correspondences of ( i ) three points and one line and the novel case of ( ii ) three points and two lines through two of the points. These problems are too diffic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2023-06, Vol.45 (6), p.7870-7884
Hauptverfasser: Fabbri, Ricardo, Duff, Timothy, Fan, Hongyi, Regan, Margaret, da Costa de Pinho, David, Tsigaridas, Elias, Wampler, Charles, Hauenstein, Jonathan, Giblin, Peter J., Kimia, Benjamin B., Leykin, Anton, Pajdla, Tomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a method for solving two minimal problems for relative camera pose estimation from three views, which are based on three view correspondences of ( i ) three points and one line and the novel case of ( ii ) three points and two lines through two of the points. These problems are too difficult to be efficiently solved by the state of the art Gröbner basis methods. Our method is based on a new efficient homotopy continuation (HC) solver framework MINUS, which dramatically speeds up previous HC solving by specializing hc methods to generic cases of our problems. We characterize their number of solutions and show with simulated experiments that our solvers are numerically robust and stable under image noise, a key contribution given the borderline intractable degree of nonlinearity of trinocular constraints. We show in real experiments that ( i ) sift feature location and orientation provide good enough point-and-line correspondences for three-view reconstruction and ( ii ) that we can solve difficult cases with too few or too noisy tentative matches, where the state of the art structure from motion initialization fails.
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2022.3226165