A finite-difference method for the one-dimensional time-dependent schrödinger equation on unbounded domain

A finite-difference scheme is proposed for the one-dimensional time-dependent Schrödinger equation. We introduce an artificial boundary condition to reduce the original problem into an initial-boundary value problem in a finite-computational domain, and then construct a finite-difference scheme by t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2005-10, Vol.50 (8), p.1345-1362
Hauptverfasser: Han, Houde, Jin, Jicheng, Wu, Xiaonan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A finite-difference scheme is proposed for the one-dimensional time-dependent Schrödinger equation. We introduce an artificial boundary condition to reduce the original problem into an initial-boundary value problem in a finite-computational domain, and then construct a finite-difference scheme by the method of reduction of order to solve this reduced problem. This scheme has been proved to be uniquely solvable, unconditionally stable, and convergent. Some numerical examples are given to show the effectiveness of the scheme.
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2005.05.006