Efficient electromagnetic analysis of line-fed aperture antennas in thick conducting screens

This paper presents a numerical and experimental verification of an approximate but efficient integral equation technique for the scattering by apertures in conducting planes with finite thicknesses. The approach is based on a perturbation method and modified Green's functions that take into ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2004-11, Vol.52 (11), p.2896-2903
Hauptverfasser: Stevanovic, I., Mosig, J.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a numerical and experimental verification of an approximate but efficient integral equation technique for the scattering by apertures in conducting planes with finite thicknesses. The approach is based on a perturbation method and modified Green's functions that take into account the finite metallization thickness. The computational effort and time needed for solving the problem are the same as in zero-thickness case. When compared to full-wave cavity treatment of thick apertures, the method is (depending on the number of unknowns) at least an order of magnitude faster. The method can be applied even to apertures of arbitrary shapes where computing the cavity's Green's functions is a difficult task. The results of simulations using the new approach show good agreement when compared to both results from full-wave cavity approach and measurements.
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2004.835268