Combining Near-Infrared Spectroscopy and Heart Rate Variability Derived Thresholds to Estimate the Critical Intensity of Exercise

Fleitas-Paniagua, PR, de Almeida Azevedo, R, Trpcic, M, Murias, JM, and Rogers, B. Combining near-infrared spectroscopy and heart rate variability derived thresholds to estimate the critical intensity of exercise. J Strength Cond Res 38(1): e16-e24, 2024-Critical intensity determination often requir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of strength and conditioning research 2024-01, Vol.38 (1), p.e16-e24
Hauptverfasser: Fleitas-Paniagua, Pablo R, de Almeida Azevedo, Rafael, Trpcic, Mackenzie, Murias, Juan M, Rogers, Bruce
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fleitas-Paniagua, PR, de Almeida Azevedo, R, Trpcic, M, Murias, JM, and Rogers, B. Combining near-infrared spectroscopy and heart rate variability derived thresholds to estimate the critical intensity of exercise. J Strength Cond Res 38(1): e16-e24, 2024-Critical intensity determination often requires costly tools and several testing sessions. Alternative approaches display relatively large individual variation. Therefore, simpler estimations with improved precision are needed. This study evaluated whether averaging the heart rate (HR) and oxygen uptake (V̇O 2 ) responses associated with the muscle deoxyhemoglobin concentration breakpoint ([HHb] BP ) and the heart rate variability (HRV) given by the detrended fluctuation analysis second threshold (HRVT2) during ramp incremental (RI) test improved the accuracy of identifying the HR and V̇O 2 at the respiratory compensation point (RCP). Ten female and 11 male recreationally trained subjects performed a 15 W·minute -1 RI test. Gas exchange, near-infrared spectroscopy (NIRS), and RR interval were recorded to assess the RCP, [HHb] BP , and HRVT2. Heart rate (mean ± SD : 158 ± 14, 156 ± 13, 160 ± 14 and, 158 ± 12 bpm) and V̇O 2 (3.08 ± 0.69, 2.98 ± 0.58, 3.06 ± 0.65, and 3.02 ± 0.60 L·minute -1 ) at the RCP, [HHb] BP , HRVT2, and HRVT2&[HHb] BP average (H&H Av ), respectively, were not significantly different ( p > 0.05). The linear relationship between H&H Av and RCP was higher compared with the relationship between [HHb] BP vs RCP and HRVT2 vs RCP for both HR ( r = 0.85; r = 0.73; r = 0.79, p > 0.05) and V̇O 2 ( r = 0.94; r = 0.93; r = 0.91, p > 0.05). Intraclass correlation between RCP, [HHb] BP , HRVT2, and H&H AV was 0.93 for V̇O 2 and 0.79 for HR. The [HHb] BP and the HRVT2 independently provided V̇O 2 and HR responses that strongly agreed with those at the RCP. Combining [HHb] BP and the HRVT2 resulted in estimations of the V̇O 2 and HR at the RCP that displayed smaller variability compared with each modality alone.
ISSN:1064-8011
1533-4287
DOI:10.1519/JSC.0000000000004597