Carbide Evolution in Temper Embrittled NiCrMoV Bainitic Steel
Phosphorus segregation to prior austenite grain boundaries in low alloy steel from exposure to temperatures of 300 to 600°C results in a susceptibility for intergranular fracture referred to as “temper embrittlement”. It has been observed that alloying steel with Mo greatly reduces the phosphorus se...
Gespeichert in:
Veröffentlicht in: | Steel research international 2004-01, Vol.75 (1), p.47-54 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Phosphorus segregation to prior austenite grain boundaries in low alloy steel from exposure to temperatures of 300 to 600°C results in a susceptibility for intergranular fracture referred to as “temper embrittlement”. It has been observed that alloying steel with Mo greatly reduces the phosphorus segregation kinetics. Therefore changes in the ferrite matrix composition from carbide precipitation and evolution involving Mo can influence the segregation phenomenon and fracture properties. This study uses analytical electron microscopy of extraction replicas to characterize the changes in carbide chemistry of a NiCrMoV bainitic steel with 0.25 wt% C that accompany the phosphorus segregation during aging at 480°C for up to 3400 hr. The steel was doped with 0.02 wt% P and tempered at 650°C to two different hardness levels, i.e., two different initial carbide distributions. The amount of grain boundary phosphorus segregation produced by aging at 480°C correlates with the level of molybdenum that remains in solution in the ferritic matrix whereas changes in vanadium and chromium appear to have less influence on the temper embrittlement. |
---|---|
ISSN: | 1611-3683 1869-344X |
DOI: | 10.1002/srin.200405926 |