Particle Image Velocimetry (PIV) measurements of USP Apparatus 1 hydrodynamics with 500 mL fill volume

[Display omitted] •Velocities in a USP Apparatus 1 with 500 mL media volume were obtained using PIV.•The tangential velocity is the dominant component throughout the vessel.•The axial and radial velocity components are relatively weak throughout the vessel.•Velocities in the 500-mL and 900-mL appara...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics 2023-11, Vol.647, p.123492-123492, Article 123492
Hauptverfasser: Sirasitthichoke, Chadakarn, Perivilli, Satish, Liddell, Mark R., Armenante, Piero M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] •Velocities in a USP Apparatus 1 with 500 mL media volume were obtained using PIV.•The tangential velocity is the dominant component throughout the vessel.•The axial and radial velocity components are relatively weak throughout the vessel.•Velocities in the 500-mL and 900-mL apparatuses were compared.•The flow rate through the basket is largely independent of media volume. Changes to hydrodynamics arising from changes within dissolution testing systems, such as the fill volume level, can potentially cause variability in dissolution results. However, the literature on hydrodynamics in Apparatus 1 is quite limited and little information is available for vessels with different liquid volumes. Here, velocities in a USP Apparatus 1 vessel with a liquid fill volume of 500 mL, a common alternative to 900 mL, were experimentally measured using 2D-2C Particle Image Velocimetry (PIV) for different basket rotational speeds. Tangential velocities dominated the flow field, while axial and radial velocities were much lower and varied with location. The velocities distribution increased proportionately with the basket rotational speed almost everywhere in the vessel excepting for underneath the basket. A nearly horizontal radial liquid jet was found to originate close to the basket upper edge. Comparison of these results with those previously reported with 900-mL liquid volume (Sirasitthichoke et al., Intern. J. Pharmaceutics:X; 3 (2021) 100078) showed that the flow rate through the baskets was similar in both systems, implying that, at least initially, the amount of drug in solution would increase linearly with time. In other words, the flow rate through the baskets would be independent of the liquid volume. Velocity profiles were also found to be similar, except in the region above the basket, which was affected by the radial jet with an orientation significantly different between the 500-mL and the 900-mL systems.
ISSN:0378-5173
1873-3476
DOI:10.1016/j.ijpharm.2023.123492