Enhancing interfacial interaction and crystallization in polylactic acid-based biocomposites via synergistic effect of wood fiber and self-assembly nucleating agent

Incorporation of natural fibers into polylactic acid (PLA) provides a feasible pathway to improve the performance of PLA with a low environmental impact. However, the insufficient interfacial adhesion between fiber and matrix limits the reinforcement efficiency of fiber and final mechanical properti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2023-12, Vol.253, p.127265-127265, Article 127265
Hauptverfasser: Lv, Chao, Luo, Shupin, Guo, Wenjing, Chang, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Incorporation of natural fibers into polylactic acid (PLA) provides a feasible pathway to improve the performance of PLA with a low environmental impact. However, the insufficient interfacial adhesion between fiber and matrix limits the reinforcement efficiency of fiber and final mechanical properties of the biocomposites. Herein we reported an efficient method to simultaneously enhance interfacial interaction, crystallization and mechanical performance of PLA-based biocomposites via combination of wood fiber (WF) and a self-assembly nucleating agent (TMC-300). The interactions between WF and TMC-300 and its influence on PLA, including interfacial crystal morphology, crystallization behavior, and mechanical performance were studied. The results showed that TMC-300 could self-assemble into dendritic-like structure on WF surface driven by hydrogen bonding, inducing the epitaxial crystallization of PLA. This unique interfacial crystallization integrated PLA matrix with WF, resulting in better interfacial adhesion. Under the optimal TMC-300 content (0.5 wt%), the flexural strength and notched impact strength of PLA composites increased by 10 % and 69 % compared with neat PLA, respectively. Additionally, TMC-300 and WF synergistically functioned as effective nucleating agents, which significantly accelerated the crystallization rate and improved the crystallinity of PLA. This work provides a new insight into the enhancement of interfacial bonding in natural fiber/PLA biocomposites. [Display omitted] •A simple but efficient method to enhance natural fiber/polymer matrix interface via introduction of self-assembly nucleator.•Dendritic-like structure is in-situ constructed at the interface driven by fiber-nucleator interaction and self-assemble.•Interfacial bonding, crystallization and mechanical performance of PLA-based biocomposites are simultaneously enhanced.•Wood fiber acts as both reinforcing material and nucleating agent.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2023.127265