Catalysis and structure of nitrogenases

In providing bioavailable nitrogen as building blocks for all classes of biomacromolecules, biological nitrogen fixation is an essential process for all organismic life. Only a single enzyme, nitrogenase, performs this task at ambient conditions and with ATP as an energy source. The assembly of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current opinion in structural biology 2023-12, Vol.83, p.102719-102719, Article 102719
1. Verfasser: Einsle, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In providing bioavailable nitrogen as building blocks for all classes of biomacromolecules, biological nitrogen fixation is an essential process for all organismic life. Only a single enzyme, nitrogenase, performs this task at ambient conditions and with ATP as an energy source. The assembly of the complex iron-sulfur enzyme nitrogenase and its catalytic mechanism remains a matter of intense study. Recent progress in the structural analysis of the three known isoforms of nitrogenase—differentiated primarily by the heterometal in their active site cofactor—has revealed a degree of structural plasticity of these clusters that suggest two distinct binding sites for substrates and reaction intermediates. A mechanistic proposal based on this finding integrates most of the available experimental data. Furthermore, the first applications of high-resolution cryo-electron microscopy have highlighted further dynamic conformational changes. Structures obtained under turnover conditions support the proposed alternating half-site reactivity in the C2-symmetric nitrogenase complex.
ISSN:0959-440X
1879-033X
DOI:10.1016/j.sbi.2023.102719