Recent advances on the Role of Gut Microbiota in the Development of Heart Failure by Mediating Immune Metabolism

The association between gut microbiota and the development of heart failure has become a research hotspot in recent years and the impact of gut microbiota on heart failure has attracted growing interest. From 2006 to 2021, the global research on gut microbiota and heart failure has gradually expande...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current problems in cardiology 2024-03, Vol.49 (3), p.102128-102128, Article 102128
Hauptverfasser: Huang, Yu-jing, Ferrari, Markus W., Lin, Shu, Wang, Zhen-hua
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The association between gut microbiota and the development of heart failure has become a research hotspot in recent years and the impact of gut microbiota on heart failure has attracted growing interest. From 2006 to 2021, the global research on gut microbiota and heart failure has gradually expanded, indicating a developed and promising research field. There were 40 countries, 196 institutions, and 257 authors involved in the publication on the relationship between gut microbiota and heart failure, respectively. In patients with heart failure, inadequate visceral perfusion leads to ischemia and intestinal edema, which compromise the gut barrier. This subsequently results in the translocation of bacteria and bacterial metabolites into the circulatory system and causes local and systemic inflammatory responses. The gastrointestinal tract contains the largest number of immune cells in the human body and gut microbiota play important roles in the immune system by promoting immune tolerance to symbiotic bacteria. Studies have shown that probiotics can act on gut microorganisms, thereby increasing choline metabolism and reducing plasma TMA and TMAO concentrations, thus inhibiting the development of heart failure. Meanwhile, probiotics induce the production of inflammatory suppressors to maintain gut immune stability and inhibit the progression of heart failure by reducing ventricular remodeling. Here, we review the current understanding of gut microbiota-driven immune dysfunction in experimental and clinical heart failure, as well as the therapeutic interventions that could be used to address these issues. [Display omitted]
ISSN:0146-2806
1535-6280
DOI:10.1016/j.cpcardiol.2023.102128