Recycling of nutrient medium to improve productivity in large-scale microalgal culture using a hybrid electrochemical water treatment system
•A new electrolysis-based hybrid system for recycling nutrient medium was analyzed.•Electrolytically-disinfected nutrient medium increased biomass productivity.•We used the membrane filtration (MF)-electrolysis-ultraviolet (UV) system.•MF-electrolysis-UV system achieved 99.5 % disinfection and 80.3 ...
Gespeichert in:
Veröffentlicht in: | Water research (Oxford) 2023-11, Vol.246, p.120683-120683, Article 120683 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •A new electrolysis-based hybrid system for recycling nutrient medium was analyzed.•Electrolytically-disinfected nutrient medium increased biomass productivity.•We used the membrane filtration (MF)-electrolysis-ultraviolet (UV) system.•MF-electrolysis-UV system achieved 99.5 % disinfection and 80.3 % carbon removal.•The system achieved nutrient medium recycling, with >50 % cost reduction.
Recycling and reusing of nutrient media in microalgal cultivation are important strategies to reduce water consumption and nutrient costs. However, these approaches have limitations, e.g., a decrease in biomass production, (because as reused media can inhibit biomass growth). To address these limitations, we applied a novel membrane filtration‒electrolysis‒ultraviolet hybrid water treatment method capable of laboratory-to-large-scale operation to increase biomass productivity and enable nutrient medium disinfection and recycling. In laboratory-scale experiments, electrolysis effectively remove the biological contaminants from the spent nutrient medium, resulting in a high on-site removal efficiency of dissolved organic carbon (DOC; 80.3 ± 5 %) and disinfection (99.5 ± 0.2 %). Compared to the results for the recycling of nutrient medium without water treatment, electrolysis resulted in a 1.5-fold increase in biomass production, which was attributable to the removal of biological inhibitors from electrochemically produced oxidants (mainly OCl−). In scaled-up applications, the hybrid system improved the quality of the recycled nutrient medium, with 85 ± 2 % turbidity removal, 75 ± 3 % DOC removal, and 99.5 ± 2 % disinfection efficiency, which was beneficial for biomass growth by removing biological inhibitors. After applying the hybrid water treatment method, we achieved a Spirulina biomass production of 0.47 ± 0.03 g L−1, similar to that obtained using a fresh medium (0.53 ± 0.02 g L−1). The on-site disinfection process described herein is practical and offers a cost-saving and environmental friendly alternative for nutrient medium recycling and reusing water in mass and sustainable cultivation of microalgae. |
---|---|
ISSN: | 0043-1354 1879-2448 |
DOI: | 10.1016/j.watres.2023.120683 |