A Dynamic Gain Fixed-Time Robust ZNN Model for Time-Variant Equality Constrained Quaternion Least Squares Problem With Applications to Multiagent Systems

A dynamic gain fixed-time (FXT) robust zeroing neural network (DFTRZNN) model is proposed to effectively solve time-variant equality constrained quaternion least squares problem (TV-EQLS). The proposed approach surmounts the shortcomings of conventional numerical algorithms which fail to address tim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2023-10, Vol.35 (12), p.18394-18403
Hauptverfasser: Cao, Penglin, Xiao, Lin, He, Yongjun, Li, Jichun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A dynamic gain fixed-time (FXT) robust zeroing neural network (DFTRZNN) model is proposed to effectively solve time-variant equality constrained quaternion least squares problem (TV-EQLS). The proposed approach surmounts the shortcomings of conventional numerical algorithms which fail to address time-variant problems. The DFTRZNN model is constructed with a novel dynamic gain parameter and a novel activation function (NAF), which differs from previous zeroing neural network (ZNN) models. Moreover, the comprehensive theoretical derivation of the FXT stability and robustness of the DFTRZNN model is presented in detail. Simulation results further confirm the availability and superiority of the DFTRZNN model for solving TV-EQLS. Finally, the consensus protocols of multiagent systems are presented by utilizing the design scheme of the DFTRZNN model, which further demonstrates its practical application value.
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2023.3315332