An engineered nanoplatform cascade to relieve extracellular acidity and enhance resistance-free chemotherapy

Tumor extracellular acidity and chemoresistance are regarded as the main obstacles to achieving optimal chemotherapeutic efficacy in tumor therapy. Herein, a new kind of acid-cascade P-S-Z nanoparticles (NPs) is developed to relieve extracellular acidosis and enhance chemotherapy without causing dru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of controlled release 2023-11, Vol.363, p.562-573
Hauptverfasser: Tong, Yuqing, Gu, Meng, Luo, Xingyu, Qi, Haifeng, Jiang, Wei, Deng, Yu, Wei, Lulu, Liu, Jun, Ding, Yin, Cai, Jianfeng, Hu, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tumor extracellular acidity and chemoresistance are regarded as the main obstacles to achieving optimal chemotherapeutic efficacy in tumor therapy. Herein, a new kind of acid-cascade P-S-Z nanoparticles (NPs) is developed to relieve extracellular acidosis and enhance chemotherapy without causing drug resistance. The P-S-Z NPs selectively accumulate in tumors and then regulate the release of S-Z NPs containing syrosingopine (Syr) and acid-activated prodrug ZMC1-Pt depending on the extracellular acidity. Benefiting from their small size and positive surface charge, S-Z NPs are easily internalized by tumor cells in deep tumor tissue, facilitating the release of Syr to inhibit lactic acid excretion and ultimately enhance cell acidosis. The prolonged intracellular acidosis not only inhibits tumor cell proliferation, but also continuously triggers the activation of ZMC1-Pt prodrug, a platinum-based chemotherapeutic drug that effectively eliminates cancer cells and restores wild-type p53 function to prevent tumor chemoresistance. As a proof of concept, this is a promising strategy to transfer the adverse effect of intracellular acidosis to facilitate chemotherapy. This well-designed delivery system effectively kills tumor cells without causing significant tumor drug resistance, thus opening a new window to treat cancer. The drug delivery nanoparticles (P-S-Z NPs) obtained by co-loading syrosingopine (Syr) and acid-activated prodrug ZMC1-Pt are developed to relieve extracellular acidosis and enhance chemotherapy without causing tumor drug resistance. This nanoplatform with great biocompatibility can selectively accumulate in tumors, then regulate extracellular acidity and restore the functions of wild-type p53 to prevent the emergence of chemoresistance. [Display omitted]
ISSN:0168-3659
1873-4995
DOI:10.1016/j.jconrel.2023.10.005