Predicting the risk stratification of gastrointestinal stromal tumors using machine learning-based ultrasound radiomics

Purpose This study aimed to use conventional ultrasound features, ultrasound radiomics, and machine learning algorithms to establish a predictive model to assess the risk of post-surgical recurrence of gastrointestinal stromal tumors (GISTs). Methods This retrospective analysis included 230 patients...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical ultrasonics (2001) 2024, Vol.51 (1), p.71-82
Hauptverfasser: Zhuo, Minling, Tang, Yi, Guo, Jingjing, Qian, Qingfu, Xue, Ensheng, Chen, Zhikui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose This study aimed to use conventional ultrasound features, ultrasound radiomics, and machine learning algorithms to establish a predictive model to assess the risk of post-surgical recurrence of gastrointestinal stromal tumors (GISTs). Methods This retrospective analysis included 230 patients with pathologically diagnosed GISTs. Radiomic features were extracted from manually annotated images. Radiomic features plus conventional ultrasound features were selected using the SelectKbest analysis of variance and stratified tenfold cross-validation recursive elimination methods. Finally, five different machine learning algorithms (logistic regression [LR], support vector machine [SVM], random forest [RF], extreme gradient boosting [XGBoost], and multilayer perceptron [MLP]) were established to predict risk stratification of GISTs. The predictive performance of the established model was mainly evaluated based on the area under the receiver operating characteristic (ROC) curve (AUC) and accuracy, whereas the predictive performance of the optimal machine learning algorithm and a radiologist's subjective assessment were compared using McNemar’s test. Results Seven radiomics features and one conventional ultrasound feature were selected to construct the machine learning models for GIST risk classification. The mentioned five machine learning models were able to predict the malignant potential of GISTs. LR and SVM outperformed other classifiers on the test set, with LR achieving an accuracy of 0.852 (AUC, 0.881; sensitivity, 0.871; specificity, 0.826) and SVM achieving an accuracy of 0.852 (AUC, 0.879; sensitivity, 0.839; specificity, 0.870), and proved significantly better than the radiologist (accuracy, 0.691; sensitivity, 0.645; specificity, 0.813). Conclusion Machine learning-based ultrasound radiomics features are able to noninvasively predict the biological risk of GISTs.
ISSN:1346-4523
1613-2254
DOI:10.1007/s10396-023-01373-0